BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 33772920)

  • 1. Global analysis of boron-induced ribosome stalling reveals its effects on translation termination and unique regulation by AUG-stops in Arabidopsis shoots.
    Sotta N; Chiba Y; Miwa K; Takamatsu S; Tanaka M; Yamashita Y; Naito S; Fujiwara T
    Plant J; 2021 Jun; 106(5):1455-1467. PubMed ID: 33772920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1.
    Tanaka M; Yokoyama T; Saito H; Nishimoto M; Tsuda K; Sotta N; Shigematsu H; Shirouzu M; Iwasaki S; Ito T; Fujiwara T
    Nat Chem Biol; 2024 May; 20(5):605-614. PubMed ID: 38267667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational buffering by ribosome stalling in upstream open reading frames.
    Bottorff TA; Park H; Geballe AP; Subramaniam AR
    PLoS Genet; 2022 Oct; 18(10):e1010460. PubMed ID: 36315596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits In Vivo.
    Young DJ; Makeeva DS; Zhang F; Anisimova AS; Stolboushkina EA; Ghobakhlou F; Shatsky IN; Dmitriev SE; Hinnebusch AG; Guydosh NR
    Mol Cell; 2018 Sep; 71(5):761-774.e5. PubMed ID: 30146315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translation of TNFAIP2 is tightly controlled by upstream open reading frames.
    Scholz A; Rappl P; Böffinger N; Mota AC; Brüne B; Schmid T
    Cell Mol Life Sci; 2020 May; 77(10):2017-2027. PubMed ID: 31392347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes.
    Tidu A; Martin F
    Biochimie; 2024 Feb; 217():20-30. PubMed ID: 37741547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upstream open reading frames regulate translation of cancer-associated transcripts and encode HLA-presented immunogenic tumor antigens.
    Nelde A; Flötotto L; Jürgens L; Szymik L; Hubert E; Bauer J; Schliemann C; Kessler T; Lenz G; Rammensee HG; Walz JS; Wethmar K
    Cell Mol Life Sci; 2022 Mar; 79(3):171. PubMed ID: 35239002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes.
    Hayden CA; Jorgensen RA
    BMC Biol; 2007 Jul; 5():32. PubMed ID: 17663791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy.
    Hedaya OM; Venkata Subbaiah KC; Jiang F; Xie LH; Wu J; Khor ES; Zhu M; Mathews DH; Proschel C; Yao P
    Nat Commun; 2023 Oct; 14(1):6166. PubMed ID: 37789015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis.
    Tanaka M; Takano J; Chiba Y; Lombardo F; Ogasawara Y; Onouchi H; Naito S; Fujiwara T
    Plant Cell; 2011 Sep; 23(9):3547-59. PubMed ID: 21908722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using Ribosome Profiling.
    Ji Z
    Curr Protoc Mol Biol; 2018 Oct; 124(1):e67. PubMed ID: 30178897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural uORF variation in plants.
    Wang J; Liu J; Guo Z
    Trends Plant Sci; 2024 Mar; 29(3):290-302. PubMed ID: 37640640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of yeast Tma20/MCTS1, Tma22/DENR and Tma64/eIF2D on translation reinitiation and ribosome recycling.
    Jendruchová K; Gaikwad S; Poncová K; Gunišová S; Valášek LS; Hinnebusch AG
    bioRxiv; 2024 Mar; ():. PubMed ID: 38903097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upstream open reading frames: new players in the landscape of cancer gene regulation.
    Dasgupta A; Prensner JR
    NAR Cancer; 2024 Jun; 6(2):zcae023. PubMed ID: 38774471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting functional consequences of SNPs on mRNA translation via machine learning.
    Li Z; Chen L
    Nucleic Acids Res; 2023 Aug; 51(15):7868-7881. PubMed ID: 37427781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial stress defense: the crucial role of ribosome speed.
    Zhu M; Dai X
    Cell Mol Life Sci; 2020 Mar; 77(5):853-858. PubMed ID: 31552449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR.
    Tian J; Tang Z; Niu R; Zhou Y; Yang D; Chen D; Luo M; Mou R; Yuan M; Xu G
    Sci China Life Sci; 2024 Apr; ():. PubMed ID: 38679667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome profiling reveals the role of yeast RNA-binding proteins Cth1 and Cth2 in translational regulation.
    Barlit H; Romero AM; Gülhan A; Patnaik PK; Tyshkovskiy A; Martínez-Pastor MT; Gladyshev VN; Puig S; Labunskyy VM
    iScience; 2024 Jun; 27(6):109868. PubMed ID: 38779483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboformer: a deep learning framework for predicting context-dependent translation dynamics.
    Shao B; Yan J; Zhang J; Liu L; Chen Y; Buskirk AR
    Nat Commun; 2024 Mar; 15(1):2011. PubMed ID: 38443396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboformer: A Deep Learning Framework for Predicting Context-Dependent Translation Dynamics.
    Shao B; Yan J; Zhang J; Buskirk AR
    bioRxiv; 2023 Apr; ():. PubMed ID: 37163112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.