These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33773237)

  • 1. The synergistic effect of grain boundary and grain orientation on micro-mechanical properties of austenitic stainless steel.
    Hu CY; Wan XL; Zhang YJ; Deng XT; Wang ZD; Misra RDK
    J Mech Behav Biomed Mater; 2021 Jun; 118():104473. PubMed ID: 33773237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions.
    Gong N; Hu C; Hu B; An B; Misra RDK
    J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel.
    Hu CY; Somani MC; Misra RDK; Yang CG
    J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel.
    Husain A; La P; Hongzheng Y; Jie S
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel.
    Krawczynska AT; Lewandowska M; Pippan R; Kurzydlowski KJ
    J Nanosci Nanotechnol; 2013 May; 13(5):3246-9. PubMed ID: 23858838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.
    Engelberg DL; Humphreys FJ; Marrow TJ
    J Microsc; 2008 Jun; 230(Pt 3):435-44. PubMed ID: 18503670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical behavior in the interior and boundary of magnesium aluminate spinel (MgAl
    Geng H; Du W; Wang H; Li J
    Appl Opt; 2021 Aug; 60(22):6639-6647. PubMed ID: 34612907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Study of Precipitates' Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel.
    Ma J; Tan H; Dong N; Gao J; Wang P; Wang Z; Han P
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.
    Cizek P; Whiteman JA; Rainforth WM; Beynon JH
    J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Five-parameter grain boundary analysis of a grain boundary-engineered austenitic stainless steel.
    Jones R; Randle V; Engelberg D; Marrow TJ
    J Microsc; 2009 Mar; 233(3):417-22. PubMed ID: 19250462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel.
    Pei W; Yang S; Cao K; Zhao A
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Numerical Study of Slip System Evolution in Ultra-Thin Stainless Steel Foil.
    Ren Z; Fan W; Hou J; Wang T
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31195601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the Hydrogen Redistribution at the Grain Boundary of Misoriented Bicrystals in Austenite Stainless Steel.
    Yang F; Yan T; Zhang W; Zhang H; Zhao L
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.
    Mark AF; Li W; Sharples S; Withers PJ
    J Microsc; 2017 Jul; 267(1):89-97. PubMed ID: 28294352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation-Dependent Deformation Behavior of 316L Steel Manufactured by Laser Metal Deposition and Casting under Local Scratch and Indentation Load.
    Pöhl F; Hardes C; Scholz F; Frenzel J
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical modeling of the thermomechanical behavior of ASTM F-1586 high nitrogen austenitic stainless steel used as a biomaterial under multipass deformation.
    Bernardes FR; Rodrigues SF; Silva ES; Reis GS; Silva MB; Junior AM; Balancin O
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():87-98. PubMed ID: 25842112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Temperature on Mechanical Properties of Nanocrystalline 316L Stainless Steel Investigated via Molecular Dynamics Simulations.
    Husain A; La P; Hongzheng Y; Jie S
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32580316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel.
    Du C; Liu G; Sun B; Xin S; Shen T
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and Properties of Porous High-N Ni-Free Austenitic Stainless Steel Fabricated by Powder Metallurgical Route.
    Hu L; Ngai T; Peng H; Li L; Zhou F; Peng Z
    Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29932106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.