These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 33773253)

  • 1. Structural properties of deprotonated naphthenic acids immersed in water in pristine and hydroxylated carbon nanopores from molecular perspectives.
    Zhang M; Li W; Jin Z
    J Hazard Mater; 2021 Aug; 415():125660. PubMed ID: 33773253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive Adsorption of Naphthenic Acids and Polyaromatic Molecules at a Toluene-Water Interface.
    Teklebrhan RB; Jian C; Choi P; Xu Z; Sjöblom J
    J Phys Chem B; 2016 Dec; 120(50):12901-12910. PubMed ID: 27959570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and structure of benzene on silica surfaces and in nanopores.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel.
    Benally C; Messele SA; Gamal El-Din M
    Water Res; 2019 May; 154():402-411. PubMed ID: 30822600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of naphthenic acids on high surface area activated carbons.
    Iranmanesh S; Harding T; Abedi J; Seyedeyn-Azad F; Layzell DB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(8):913-22. PubMed ID: 24766592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water confinement in nanoporous silica materials.
    Renou R; Szymczyk A; Ghoufi A
    J Chem Phys; 2014 Jan; 140(4):044704. PubMed ID: 25669564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous carbon xerogel material for the adsorption of model naphthenic acids: structure effect and kinetics modelling.
    Rashed Y; Messele SA; Zeng H; Gamal El-Din M
    Environ Technol; 2020 Nov; 41(27):3534-3543. PubMed ID: 31046640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Naphthenic Acids in Controlling Self-Aggregation of a Polyaromatic Compound in Toluene.
    Teklebrhan RB; Jian C; Choi P; Xu Z; Sjöblom J
    J Phys Chem B; 2016 Apr; 120(14):3516-26. PubMed ID: 26953639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics modeling of carbon dioxide, water and natural organic matter in Na-hectorite.
    Yazaydin AO; Bowers GM; Kirkpatrick RJ
    Phys Chem Chem Phys; 2015 Sep; 17(36):23356-67. PubMed ID: 26286865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water transport in the nano-pore of the calcium silicate phase: reactivity, structure and dynamics.
    Hou D; Li Z; Zhao T; Zhang P
    Phys Chem Chem Phys; 2015 Jan; 17(2):1411-23. PubMed ID: 25427672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of phenol at the liquid-vapor interface of water.
    Pohorille A; Benjamin I
    J Chem Phys; 1991 Apr; 94(8):5599-605. PubMed ID: 11540075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and diffusion of liquid water and hydrated ions through nanopores in graphene: ab initio molecular dynamics simulation.
    Guerrero-Avilés R; Orellana W
    Phys Chem Chem Phys; 2017 Aug; 19(31):20551-20558. PubMed ID: 28730215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of surfactants with hydrophobic surfaces in nanopores.
    Brumaru C; Geng ML
    Langmuir; 2010 Dec; 26(24):19091-9. PubMed ID: 21043464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulation of water confined in nanoporous silica.
    Bonnaud PA; Coasne B; Pellenq RJ
    J Phys Condens Matter; 2010 Jul; 22(28):284110. PubMed ID: 21399282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon.
    Islam MS; McPhedran KN; Messele SA; Liu Y; Gamal El-Din M
    Chemosphere; 2018 Jul; 202():716-725. PubMed ID: 29604558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naphthenic acid anaerobic biodegrading consortia enriched from pristine sediments underlying oil sands tailings ponds.
    Lv X; Ma B; Cologgi D; Lee K; Ulrich A
    J Hazard Mater; 2020 Jul; 394():122546. PubMed ID: 32203719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous electrolytes confined within functionalized silica nanopores.
    Videla PE; Sala J; Martí J; Guàrdia E; Laria D
    J Chem Phys; 2011 Sep; 135(10):104503. PubMed ID: 21932906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.