These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33773332)

  • 21. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis.
    Nath S
    Bioeng Transl Med; 2019 Jan; 4(1):164-170. PubMed ID: 30680327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of demand and supply sides in the ATP energy economics of cells.
    Nath S
    Biophys Chem; 2019 Sep; 252():106208. PubMed ID: 31238246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis--invited review part 2.
    Nath S
    J Bioenerg Biomembr; 2010 Aug; 42(4):301-9. PubMed ID: 20490638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Need for Consistency with Physical Laws and Logic in Choosing Between Competing Molecular Mechanisms in Biological Processes: A Case Study in Modeling ATP Synthesis.
    Nath S
    Function (Oxf); 2022; 3(6):zqac054. PubMed ID: 36340246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond binding change: the molecular mechanism of ATP hydrolysis by F
    Nath S
    Front Chem; 2023; 11():1058500. PubMed ID: 37324562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells.
    Nath S; Balling R
    Function (Oxf); 2024; 5(3):zqae008. PubMed ID: 38706962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane.
    Morelli AM; Ravera S; Calzia D; Panfoli I
    Open Biol; 2019 Apr; 9(4):180221. PubMed ID: 30966998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy transfer in mitochondrial synthesis of ATP; a survey.
    Klingenberg M
    Ciba Found Symp; 1975; (31):23-40. PubMed ID: 238807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy coupling to ATP synthesis by the proton-translocating ATPase.
    Maloney PC
    J Membr Biol; 1982; 67(1):1-12. PubMed ID: 6178829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments.
    Petronilli V; Azzone GF; Pietrobon D
    Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New perspectives on photosynthetic phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis.
    Nath S; Elangovan R
    J Bioenerg Biomembr; 2011 Dec; 43(6):601-10. PubMed ID: 22083127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction.
    Wainio WW
    Int Rev Cytol; 1985; 96():29-50. PubMed ID: 2867062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units.
    Westerhoff HV; Melandri BA; Venturoli G; Azzone GF; Kell DB
    Biochim Biophys Acta; 1984 Dec; 768(3-4):257-92. PubMed ID: 6095906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms of energy transduction in cells: engineering applications and biological implications.
    Nath S
    Adv Biochem Eng Biotechnol; 2003; 85():125-80. PubMed ID: 12930095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport.
    Boyer PD
    FEBS Lett; 1975 Oct; 58(1):1-6. PubMed ID: 1225567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-inhibitor and uncoupler-inhibitor titrations. 1. Analysis with a linear model of chemiosmotic energy coupling.
    Pietrobon D; Caplan SR
    Biochemistry; 1986 Nov; 25(23):7682-90. PubMed ID: 2948564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stochastic free energy transduction.
    Westerhoff HV; Chen Y
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3222-6. PubMed ID: 3858819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Several physical aspects of intracellular energy transformation].
    Bliumenfel'd LA
    Biofizika; 1976; 21(5):946-57. PubMed ID: 14713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy transfer from adenosine triphosphate: quantitative analysis and mechanistic insights.
    Nath SS; Nath S
    J Phys Chem B; 2009 Feb; 113(5):1533-7. PubMed ID: 19143490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.