These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33773367)

  • 1. Resource and environmental assessment of pyrolysis-based high-value utilization of waste passenger tires.
    Wu Q; Leng S; Zhang Q; Xiao J
    Waste Manag; 2021 May; 126():201-208. PubMed ID: 33773367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacing commercial carbon black by pyrolytic residue from waste tire for tire processing: Technically feasible and economically reasonable.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Nov; 793():148597. PubMed ID: 34182453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis.
    Xu J; Yu J; Xu J; Sun C; He W; Huang J; Li G
    Sci Total Environ; 2020 Nov; 742():140235. PubMed ID: 32629243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Assessment of Waste Tire Pyrolysis and Upgrading Pathways for Production of High-Value Products.
    Wu Q; Zhang Q; Chen X; Song G; Xiao J
    ACS Omega; 2022 Sep; 7(35):30954-30966. PubMed ID: 36092573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Jun; 772():145507. PubMed ID: 33770869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flash Pyrolysis of Waste Tires in an Entrained Flow Reactor-An Experimental Study.
    Ramani B; Anjum A; Bramer E; Dierkes W; Blume A; Brem G
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Economic value of U.S. fossil fuel electricity health impacts.
    Machol B; Rizk S
    Environ Int; 2013 Feb; 52():75-80. PubMed ID: 23246069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the environmental sustainability of electricity generation in Chile.
    Gaete-Morales C; Gallego-Schmid A; Stamford L; Azapagic A
    Sci Total Environ; 2018 Sep; 636():1155-1170. PubMed ID: 29913578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators.
    Vuppaladadiyam AK; Vuppaladadiyam SSV; Sahoo A; Murugavelh S; Anthony E; Bhaskar T; Zheng Y; Zhao M; Duan H; Zhao Y; Antunes E; Sarmah AK; Leu SY
    Sci Total Environ; 2023 Jan; 857(Pt 1):159155. PubMed ID: 36206897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires.
    Zheng D; Cheng J; Wang X; Yu G; Xu R; Dai C; Liu N; Wang N; Chen B
    Waste Manag; 2023 Sep; 169():196-207. PubMed ID: 37453307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Products distribution and pollutants releasing characteristics during pyrolysis of waste tires under different thermal process.
    Chen G; Sun B; Li J; Lin F; Xiang L; Yan B
    J Hazard Mater; 2022 Feb; 424(Pt A):127351. PubMed ID: 34879557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle cost and environmental assessment for resource-oriented toilet systems.
    Shi Y; Zhou L; Xu Y; Zhou H; Shi L
    J Clean Prod; 2018 Sep; 196():1188-1197. PubMed ID: 30245554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-purity graphene and carbon nanohorns prepared by base-acid treated waste tires carbon via direct current arc plasma.
    Hou S; Xie Z; Zhang D; Yang B; Lei Y; Liang F
    Environ Res; 2023 Dec; 238(Pt 1):117071. PubMed ID: 37669736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the economic and ecological viability of generating electricity from oil derived from pyrolysis of plastic waste in China.
    Cudjoe D; Brahim T; Zhu B
    Waste Manag; 2023 Aug; 168():354-365. PubMed ID: 37343442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental evaluation of a distributed-centralized biomass pyrolysis system: A case study in Shandong, China.
    Yang X; Han D; Zhao Y; Li R; Wu Y
    Sci Total Environ; 2020 May; 716():136915. PubMed ID: 32036128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.