These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33773453)
1. Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Kiefer K; Du L; Singer H; Hollender J Water Res; 2021 May; 196():116994. PubMed ID: 33773453 [TBL] [Abstract][Full Text] [Related]
2. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Kiefer K; Müller A; Singer H; Hollender J Water Res; 2019 Nov; 165():114972. PubMed ID: 31450217 [TBL] [Abstract][Full Text] [Related]
3. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Sjerps RMA; Vughs D; van Leerdam JA; Ter Laak TL; van Wezel AP Water Res; 2016 Apr; 93():254-264. PubMed ID: 26921851 [TBL] [Abstract][Full Text] [Related]
4. Environmental forensics in groundwater coupling passive sampling and high resolution mass spectrometry for screening. Soulier C; Coureau C; Togola A Sci Total Environ; 2016 Sep; 563-564():845-54. PubMed ID: 26803221 [TBL] [Abstract][Full Text] [Related]
5. Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Hug C; Ulrich N; Schulze T; Brack W; Krauss M Environ Pollut; 2014 Jan; 184():25-32. PubMed ID: 24012788 [TBL] [Abstract][Full Text] [Related]
6. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004 [TBL] [Abstract][Full Text] [Related]
7. Identification of organic chemical indicators for tracking pollution sources in groundwater by machine learning from GC-HRMS-based suspect and non-target screening data. Ekpe OD; Choo G; Kang JK; Yun ST; Oh JE Water Res; 2024 Mar; 252():121130. PubMed ID: 38295453 [TBL] [Abstract][Full Text] [Related]
8. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Schulze S; Zahn D; Montes R; Rodil R; Quintana JB; Knepper TP; Reemtsma T; Berger U Water Res; 2019 Apr; 153():80-90. PubMed ID: 30703676 [TBL] [Abstract][Full Text] [Related]
9. Non-target screening of micropollutants and transformation products for assessing AOP-BAC treatment in groundwater. Tisler S; Tüchsen PL; Christensen JH Environ Pollut; 2022 Sep; 309():119758. PubMed ID: 35835278 [TBL] [Abstract][Full Text] [Related]
10. Entry of biocides and their transformation products into groundwater via urban stormwater infiltration systems. Hensen B; Lange J; Jackisch N; Zieger F; Olsson O; Kümmerer K Water Res; 2018 Nov; 144():413-423. PubMed ID: 30059904 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Non-targeted Screening to Profile Micropollutants in Sewage Sludge Used for Agricultural Field Amendments. Nanusha MY; Frøkjær EE; Søndergaard J; Mørk Larsen M; Schwartz Glottrup C; Bruun Nicolaisen J; Hansen M Environ Sci Technol; 2024 Jun; 58(22):9850-9862. PubMed ID: 38758285 [TBL] [Abstract][Full Text] [Related]
12. Quantitative screening and prioritization based on UPLC-IM-Q-TOF-MS as an alternative water sample monitoring strategy. Hinnenkamp V; Balsaa P; Schmidt TC Anal Bioanal Chem; 2019 Sep; 411(23):6101-6110. PubMed ID: 31278550 [TBL] [Abstract][Full Text] [Related]
13. Assessment of environmental forensic indicator for anthropogenic groundwater contamination via target/suspect/nontarget analysis using HRMS techniques. Moon H; Yun ST; Oh JE J Hazard Mater; 2024 Apr; 467():133629. PubMed ID: 38340559 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Nontarget Long-Term LC-HRMS Time Series Data Using Multivariate Statistical Approaches. Purschke K; Vosough M; Leonhardt J; Weber M; Schmidt TC Anal Chem; 2020 Sep; 92(18):12273-12281. PubMed ID: 32812753 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive micropollutant screening using LC-HRMS/MS at three riverbank filtration sites to assess natural attenuation and potential implications for human health. Hollender J; Rothardt J; Radny D; Loos M; Epting J; Huggenberger P; Borer P; Singer H Water Res X; 2018 Dec; 1():100007. PubMed ID: 31194029 [TBL] [Abstract][Full Text] [Related]
16. Identification of potentially mobile and persistent transformation products of REACH-registered chemicals and their occurrence in surface waters. Zahn D; Mucha P; Zilles V; Touffet A; Gallard H; Knepper TP; Frömel T Water Res; 2019 Mar; 150():86-96. PubMed ID: 30508717 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive monitoring of organic micro-pollutants in surface and groundwater in the surrounding of a solid-waste treatment plant of Castellón, Spain. Pitarch E; Cervera MI; Portolés T; Ibáñez M; Barreda M; Renau-Pruñonosa A; Morell I; López F; Albarrán F; Hernández F Sci Total Environ; 2016 Apr; 548-549():211-220. PubMed ID: 26802349 [TBL] [Abstract][Full Text] [Related]
18. Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments. Chiaia-Hernández AC; Scheringer M; Müller A; Stieger G; Wächter D; Keller A; Pintado-Herrera MG; Lara-Martin PA; Bucheli TD; Hollender J Sci Total Environ; 2020 Oct; 740():140181. PubMed ID: 32927551 [TBL] [Abstract][Full Text] [Related]
19. Target, suspect and non-target screening analysis from wastewater treatment plant effluents to drinking water using collision cross section values as additional identification criterion. Hinnenkamp V; Balsaa P; Schmidt TC Anal Bioanal Chem; 2022 Jan; 414(1):425-438. PubMed ID: 33768366 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Post GB; Louis JB; Lippincott RL; Procopio NA Environ Sci Technol; 2013; 47(23):13266-75. PubMed ID: 24187954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]