These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33773454)

  • 21. Enzyme-Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications.
    Fritea L; Tertis M; Sandulescu R; Cristea C
    Methods Enzymol; 2018; 609():293-333. PubMed ID: 30244795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.
    Lu L
    Biosens Bioelectron; 2018 Jul; 110():180-192. PubMed ID: 29614439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose.
    Stromberg LR; Hondred JA; Sanborn D; Mendivelso-Perez D; Ramesh S; Rivero IV; Kogot J; Smith E; Gomes C; Claussen JC
    Mikrochim Acta; 2019 Jul; 186(8):533. PubMed ID: 31309292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors.
    Cao Y; Feng T; Xu J; Xue C
    Biosens Bioelectron; 2019 Sep; 141():111447. PubMed ID: 31238279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene: The Missing Piece for Cancer Diagnosis?
    Cruz SM; Girão AF; Gonçalves G; Marques PA
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors.
    Zhang R; Chen W
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):249-268. PubMed ID: 26852831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced lipid based biosensors for food analysis.
    Nikoleli GP
    Adv Food Nutr Res; 2020; 91():301-321. PubMed ID: 32035600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants.
    Ramnani P; Saucedo NM; Mulchandani A
    Chemosphere; 2016 Jan; 143():85-98. PubMed ID: 25956023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.
    Pandey A; Gurbuz Y; Ozguz V; Niazi JH; Qureshi A
    Biosens Bioelectron; 2017 May; 91():225-231. PubMed ID: 28012318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection.
    Bollella P; Fusco G; Tortolini C; Sanzò G; Favero G; Gorton L; Antiochia R
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):152-166. PubMed ID: 27132999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress in miRNA Detection Using Graphene Material-Based Biosensors.
    Zhang C; Miao P; Sun M; Yan M; Liu H
    Small; 2019 Sep; 15(38):e1901867. PubMed ID: 31379135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanotechnology-based approaches for food sensing and packaging applications.
    Mustafa F; Andreescu S
    RSC Adv; 2020 May; 10(33):19309-19336. PubMed ID: 35515480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly sensitive nitrite sensor based on AuNPs/RGO nanocomposites modified graphene electrochemical transistors.
    Zhou Y; Ma M; He H; Cai Z; Gao N; He C; Chang G; Wang X; He Y
    Biosens Bioelectron; 2019 Dec; 146():111751. PubMed ID: 31605988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical detection of bisphenols in food: A review.
    Zhang Y; Lei Y; Lu H; Shi L; Wang P; Ali Z; Li J
    Food Chem; 2021 Jun; 346():128895. PubMed ID: 33421902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailor-made ion-imprinted polymer based on functionalized graphene oxide for the preconcentration and determination of trace copper in food samples.
    Liu Y; Qiu J; Liu Z; Ni L; Jiang Y; Gong C; Meng X; Liu F; Zhong G
    J Sep Sci; 2016 Apr; 39(7):1371-8. PubMed ID: 26841822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Affinity Biosensors for Detection of Mycotoxins in Food.
    Evtugyn G; Subjakova V; Melikishvili S; Hianik T
    Adv Food Nutr Res; 2018; 85():263-310. PubMed ID: 29860976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review.
    Dervisevic M; Dervisevic E; Şenel M
    Mikrochim Acta; 2019 Nov; 186(12):749. PubMed ID: 31696297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.
    Adhikari BR; Govindhan M; Chen A
    Sensors (Basel); 2015 Sep; 15(9):22490-508. PubMed ID: 26404304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food.
    Shabnam L; Faisal SN; Roy AK; Haque E; Minett AI; Gomes VG
    Food Chem; 2017 Apr; 221():751-759. PubMed ID: 27979268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-Dimensional Graphene Family Material: Assembly, Biocompatibility and Sensors Applications.
    Zhang X; Wang Y; Luo G; Xing M
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.