These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33773557)
1. The Proteomics and Metabolomics Analysis for Screening the Molecular Targets of Action of β-Eudesmol in Cholangiocarcinoma. Kotawong K; Chajaroenkul W; Roytrakul S; Phaonakrop N; Na-Bangchang K Asian Pac J Cancer Prev; 2021 Mar; 22(3):909-918. PubMed ID: 33773557 [TBL] [Abstract][Full Text] [Related]
2. Proteomics Analysis for Identification of Potential Cell Signaling Pathways and Protein Targets of Actions of Atractylodin and β-Eudesmol Against Cholangiocarcinoma. Kotawong K; Chaijaroenkul W; Roytrakul S; Phaonakrop N; Na-Bangchang K Asian Pac J Cancer Prev; 2020 Mar; 21(3):621-628. PubMed ID: 32212786 [TBL] [Abstract][Full Text] [Related]
3. Screening of Molecular Targets of Action of Atractylodin in Cholangiocarcinoma by Applying Proteomic and Metabolomic Approaches. Kotawong K; Chaijaroenkul W; Roytrakul S; Phaonakrop N; Na-Bangchang K Metabolites; 2019 Nov; 9(11):. PubMed ID: 31683902 [TBL] [Abstract][Full Text] [Related]
4. Effect of β-Eudesmol on NQO1 suppression-enhanced sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. Srijiwangsa P; Ponnikorn S; Na-Bangchang K BMC Pharmacol Toxicol; 2018 Jun; 19(1):32. PubMed ID: 29914576 [TBL] [Abstract][Full Text] [Related]
5. Growth inhibitory effect of β-eudesmol on cholangiocarcinoma cells and its potential suppressive effect on heme oxygenase-1 production, STAT1/3 activation, and NF-κB downregulation. Mathema VB; Chaijaroenkul W; Karbwang J; Na-Bangchang K Clin Exp Pharmacol Physiol; 2017 Nov; 44(11):1145-1154. PubMed ID: 28732110 [TBL] [Abstract][Full Text] [Related]
6. Atractylodin and β-eudesmol from Atractylodes lancea (Thunb.) DC. Inhibit Cholangiocarcinoma Cell Proliferation by Downregulating the Notch Signaling Pathway. Vanaroj P; Chaijaroenkul W; Na-Bangchang K Asian Pac J Cancer Prev; 2023 Feb; 24(2):551-558. PubMed ID: 36853304 [TBL] [Abstract][Full Text] [Related]
7. β-Eudesmol Inhibits the Migration of Cholangiocarcinoma Cells by Suppressing Epithelial-Mesenchymal Transition via PI3K/AKT and p38MAPK Modulation. Acharya B; Chajaroenkul W; Na-Bangchang K Asian Pac J Cancer Prev; 2022 Aug; 23(8):2573-2581. PubMed ID: 36037109 [TBL] [Abstract][Full Text] [Related]
8. Cytotoxic activities and effects of atractylodin and β-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line. Kotawong K; Chaijaroenkul W; Muhamad P; Na-Bangchang K J Pharmacol Sci; 2018 Feb; 136(2):51-56. PubMed ID: 29525035 [TBL] [Abstract][Full Text] [Related]
9. A randomized placebo-controlled phase I clinical trial to evaluate the immunomodulatory activities of Atractylodes lancea (Thunb) DC. in healthy Thai subjects. Kulma I; Panrit L; Plengsuriyakarn T; Chaijaroenkul W; Warathumpitak S; Na-Bangchang K BMC Complement Med Ther; 2021 Feb; 21(1):61. PubMed ID: 33579265 [TBL] [Abstract][Full Text] [Related]
10. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Plengsuriyakarn T; Karbwang J; Na-Bangchang K Clin Exp Pharmacol Physiol; 2015 Mar; 42(3):293-304. PubMed ID: 25545782 [TBL] [Abstract][Full Text] [Related]
12. Suppression of Cholangiocarcinoma Cell Growth and Proliferation by Atractylodes lancea (Thunb) DC. through ERK-Signaling Cascade. Martviset P; Panrit L; Chantree P; Muhamad P; Na-Bangchang K Asian Pac J Cancer Prev; 2021 Nov; 22(11):3633-3640. PubMed ID: 34837922 [TBL] [Abstract][Full Text] [Related]
13. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway. Shen H; Zhang J; Zhang Y; Feng Q; Wang H; Li G; Jiang W; Li X Gene; 2019 May; 698():50-60. PubMed ID: 30822475 [TBL] [Abstract][Full Text] [Related]
14. Therapeutic potential and pharmacological activities of β-eudesmol. Acharya B; Chaijaroenkul W; Na-Bangchang K Chem Biol Drug Des; 2021 Apr; 97(4):984-996. PubMed ID: 33449412 [TBL] [Abstract][Full Text] [Related]
15. TCF21 inhibits tumor-associated angiogenesis and suppresses the growth of cholangiocarcinoma by targeting PI3K/Akt and ERK signaling. Duan HX; Li BW; Zhuang X; Wang LT; Cao Q; Tan LH; Qu GF; Xiao S Am J Physiol Gastrointest Liver Physiol; 2019 Jun; 316(6):G763-G773. PubMed ID: 30920845 [TBL] [Abstract][Full Text] [Related]
16. Stathmin decreases cholangiocarcinoma cell line sensitivity to staurosporine-triggered apoptosis via the induction of ERK and Akt signaling. Wang Y; Gao Z; Zhang D; Bo X; Wang Y; Wang J; Shen S; Liu H; Suo T; Pan H; Ai Z; Liu H Oncotarget; 2017 Feb; 8(9):15775-15788. PubMed ID: 28178656 [TBL] [Abstract][Full Text] [Related]
17. β-Eudesmol induces JNK-dependent apoptosis through the mitochondrial pathway in HL60 cells. Li Y; Li T; Miao C; Li J; Xiao W; Ma E Phytother Res; 2013 Mar; 27(3):338-43. PubMed ID: 22585533 [TBL] [Abstract][Full Text] [Related]
18. Tip60 Suppresses Cholangiocarcinoma Proliferation and Metastasis via PI3k-AKT. Zhang Y; Ji G; Han S; Shao Z; Lu Z; Huo L; Zhang J; Yang R; Feng Q; Shen H; Wang H; Li X Cell Physiol Biochem; 2018; 50(2):612-628. PubMed ID: 30308494 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of heritability of β-eudesmol/hinesol content ratio in Atractylodes lancea De Candolle. Tsusaka T; Makino B; Ohsawa R; Ezura H Hereditas; 2020 Mar; 157(1):7. PubMed ID: 32160928 [TBL] [Abstract][Full Text] [Related]
20. Tetraspanin 1 promotes epithelial-to-mesenchymal transition and metastasis of cholangiocarcinoma via PI3K/AKT signaling. Wang Y; Liang Y; Yang G; Lan Y; Han J; Wang J; Yin D; Song R; Zheng T; Zhang S; Pan S; Liu X; Zhu M; Liu Y; Cui Y; Meng F; Zhang B; Liang S; Guo H; Liu Y; Hassan MK; Liu L J Exp Clin Cancer Res; 2018 Dec; 37(1):300. PubMed ID: 30514341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]