These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 33773657)

  • 1. 3D Phage-based biomolecular filter for effective high throughput capture of Salmonella Typhimurium in liquid streams.
    Du S; Chen IH; MacLachlan A; Liu Y; Huang TS; Cheng Z; Chen P; Chin BA
    Food Res Int; 2021 Apr; 142():110181. PubMed ID: 33773657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Salmonella Typhimurium on Spinach Using Phage-Based Magnetoelastic Biosensors.
    Wang F; Horikawa S; Hu J; Wikle HC; Chen IH; Du S; Liu Y; Chin BA
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage applications for fresh produce food safety.
    López-Cuevas O; Medrano-Félix JA; Castro-Del Campo N; Chaidez C
    Int J Environ Health Res; 2021 Sep; 31(6):687-702. PubMed ID: 31646886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety.
    Denes T; Wiedmann M
    Curr Opin Biotechnol; 2014 Apr; 26():45-9. PubMed ID: 24679257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors.
    Bai J; Jeon B; Ryu S
    Food Microbiol; 2019 Feb; 77():52-60. PubMed ID: 30297056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phage biocontrol for reducing bacterial foodborne pathogens in produce and other foods.
    Vikram A; Callahan MT; Woolston JW; Sharma M; Sulakvelidze A
    Curr Opin Biotechnol; 2022 Dec; 78():102805. PubMed ID: 36162186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surveillance for foodborne disease outbreaks - United States, 1998-2008.
    Gould LH; Walsh KA; Vieira AR; Herman K; Williams IT; Hall AJ; Cole D;
    MMWR Surveill Summ; 2013 Jun; 62(2):1-34. PubMed ID: 23804024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage therapy in the food industry.
    Endersen L; O'Mahony J; Hill C; Ross RP; McAuliffe O; Coffey A
    Annu Rev Food Sci Technol; 2014; 5():327-49. PubMed ID: 24422588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing and optimizing bacteriophage treatment to control enterohemorrhagic Escherichia coli on fresh produce.
    Snyder AB; Perry JJ; Yousef AE
    Int J Food Microbiol; 2016 Nov; 236():90-7. PubMed ID: 27454784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.
    Sulakvelidze A
    J Sci Food Agric; 2013 Oct; 93(13):3137-46. PubMed ID: 23670852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid screening of waterborne pathogens using phage-mediated separation coupled with real-time PCR detection.
    Wang Z; Wang D; Kinchla AJ; Sela DA; Nugen SR
    Anal Bioanal Chem; 2016 Jun; 408(15):4169-78. PubMed ID: 27071764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium.
    Lakshmanan RS; Guntupalli R; Hu J; Kim DJ; Petrenko VA; Barbaree JM; Chin BA
    J Microbiol Methods; 2007 Oct; 71(1):55-60. PubMed ID: 17765344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage Applications for Food Production and Processing.
    Moye ZD; Woolston J; Sulakvelidze A
    Viruses; 2018 Apr; 10(4):. PubMed ID: 29671810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of Possible Multistate Outbreaks of Salmonella, Shiga Toxin-Producing Escherichia coli, and Listeria monocytogenes Infections - United States, 2016.
    Marshall KE; Nguyen TA; Ablan M; Nichols MC; Robyn MP; Sundararaman P; Whitlock L; Wise ME; Jhung MA
    MMWR Surveill Summ; 2020 Nov; 69(6):1-14. PubMed ID: 33180756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decontamination of Escherichia coli O157:H7 on fresh Romaine lettuce using a novel bacteriophage lysin.
    Xu S; Campisi E; Li J; Fischetti VA
    Int J Food Microbiol; 2021 Mar; 341():109068. PubMed ID: 33498009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The challenge of controlling foodborne diseases: bacteriophages as a new biotechnological tool].
    Jorquera D; Galarce N; Borie C
    Rev Chilena Infectol; 2015 Dec; 32(6):678-88. PubMed ID: 26928505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring.
    Olsson AL; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13698-706. PubMed ID: 27171886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges for the application of bacteriophages as effective antibacterial agents in the food industry.
    Li J; Zhao F; Zhan W; Li Z; Zou L; Zhao Q
    J Sci Food Agric; 2022 Jan; 102(2):461-471. PubMed ID: 34487550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations.
    Hagens S; Loessner MJ
    Curr Pharm Biotechnol; 2010 Jan; 11(1):58-68. PubMed ID: 20214608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phages in the global fruit and vegetable industry.
    Żaczek M; Weber-Dąbrowska B; Górski A
    J Appl Microbiol; 2015 Mar; 118(3):537-56. PubMed ID: 25410419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.