These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33773895)

  • 21. Influence of nasal cavities on voice quality: Computer simulations and experiments.
    Vampola T; Horáček J; Radolf V; Švec JG; Laukkanen AM
    J Acoust Soc Am; 2020 Nov; 148(5):3218. PubMed ID: 33261400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Study on the nasal resonance].
    Ding G; Yu D; Yu H
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1999 Feb; 13(2):51-2. PubMed ID: 12564013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic roles of the laryngeal cavity in vocal tract resonance.
    Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Dynamic Effect of the Valleculae on Singing Voice - An Exploratory Study Using 3D Printed Vocal Tracts.
    Feng M; Howard DM
    J Voice; 2023 Mar; 37(2):178-186. PubMed ID: 33397591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.
    Vampola T; Horáček J; Laukkanen AM; Švec JG
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):14-23. PubMed ID: 23517635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic characteristics of the human paranasal sinuses derived from transmission characteristic measurement and morphological observation.
    Dang J; Honda K
    J Acoust Soc Am; 1996 Nov; 100(5):3374-83. PubMed ID: 8914318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of oral-nasal coupling on whispered vowel spectra.
    Watterson T; Emanuel F
    Cleft Palate J; 1981 Jan; 18(1):24-38. PubMed ID: 6936099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrality of nasalization and F1. II. Basic sensitivity and phonetic labeling measure distinct sensory and decision-rule interactions.
    Macmillan NA; Kingston J; Thorburn R; Dickey LW; Bartels C
    J Acoust Soc Am; 1999 Nov; 106(5):2913-32. PubMed ID: 10573905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model of acoustic interspeaker variability based on the concept of formant-cavity affiliation.
    Apostol L; Perrier P; Bailly G
    J Acoust Soc Am; 2004 Jan; 115(1):337-51. PubMed ID: 14759026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation.
    Fleischer M; Mainka A; Kürbis S; Birkholz P
    PLoS One; 2018; 13(3):e0193708. PubMed ID: 29543829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic and perceptual correlates of the non-nasal--nasal distinction for vowels.
    Hawkins S; Stevens KN
    J Acoust Soc Am; 1985 Apr; 77(4):1560-75. PubMed ID: 3989111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vocal Tract Resonance Detection at Low Frequencies: Improving Physical and Transducer Configurations.
    Thilakan J; B T B; P M S; Chen JM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects.
    Hilberg O
    Allergy; 2002; 57 Suppl 70():5-39. PubMed ID: 11990714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of nasal acceleration and nasalance across vowels.
    Thorp EB; Virnik BT; Stepp CE
    J Speech Lang Hear Res; 2013 Oct; 56(5):1476-84. PubMed ID: 23838984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method for measurement of the vocal tract impedance at the mouth.
    Kob M; Neuschaefer-Rube C
    Med Eng Phys; 2002; 24(7-8):467-71. PubMed ID: 12237041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Vocal Tract in Loud Twang-Like Singing While Producing High and Low Pitches.
    Saldías M; Laukkanen AM; Guzmán M; Miranda G; Stoney J; Alku P; Sundberg J
    J Voice; 2021 Sep; 35(5):807.e1-807.e23. PubMed ID: 32305174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection and assessment of hypernasality in repaired cleft palate speech using vocal tract and residual features.
    Dubey AK; Prasanna SRM; Dandapat S
    J Acoust Soc Am; 2019 Dec; 146(6):4211. PubMed ID: 31893680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Vocal Tract Organ: A New Musical Instrument Using 3-D Printed Vocal Tracts.
    Howard DM
    J Voice; 2018 Nov; 32(6):660-667. PubMed ID: 29111337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.