These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33773987)

  • 1. Long-Term Effects of Sirolimus on Human Skin TSC2-Null Fibroblast‒Like Cells.
    Cai X; Fan Q; Kang GS; Grolig K; Shen X; Billings EM; Pacheco-Rodriguez G; Darling TN; Moss J
    J Invest Dermatol; 2021 Sep; 141(9):2291-2299.e2. PubMed ID: 33773987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapamycin requires AMPK activity and p27 expression for promoting autophagy-dependent Tsc2-null cell survival.
    Campos T; Ziehe J; Fuentes-Villalobos F; Riquelme O; Peña D; Troncoso R; Lavandero S; Morin V; Pincheira R; Castro AF
    Biochim Biophys Acta; 2016 Jun; 1863(6 Pt A):1200-7. PubMed ID: 26975583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mTOR inhibitor rapamycin significantly improves facial angiofibroma lesions in a patient with tuberous sclerosis.
    Hofbauer GF; Marcollo-Pini A; Corsenca A; Kistler AD; French LE; Wüthrich RP; Serra AL
    Br J Dermatol; 2008 Aug; 159(2):473-5. PubMed ID: 18547304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex.
    MacKeigan JP; Krueger DA
    Neuro Oncol; 2015 Dec; 17(12):1550-9. PubMed ID: 26289591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of 6-phosphofructo-2-kinase (PFKFB3) by hyperactivated mammalian target of rapamycin complex 1 is critical for tumor growth in tuberous sclerosis complex.
    Wang Y; Tang S; Wu Y; Wan X; Zhou M; Li H; Zha X
    IUBMB Life; 2020 May; 72(5):965-977. PubMed ID: 31958214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant mTOR/autophagy/Nurr1 signaling is critical for TSC-associated tumor development.
    Wang Y; Li C; Zhang Y; Zha X; Zhang H; Hu Z; Wu C
    Biochem Cell Biol; 2021 Oct; 99(5):570-577. PubMed ID: 34463540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Hsp90 and mTOR inhibitors as potential drugs for the treatment of TSC1/TSC2 deficient cancer.
    Mrozek EM; Bajaj V; Guo Y; Malinowska IA; Zhang J; Kwiatkowski DJ
    PLoS One; 2021; 16(4):e0248380. PubMed ID: 33891611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TSC2 regulates microRNA biogenesis via mTORC1 and GSK3β.
    Ogórek B; Lam HC; Khabibullin D; Liu HJ; Nijmeh J; Triboulet R; Kwiatkowski DJ; Gregory RI; Henske EP
    Hum Mol Genet; 2018 May; 27(9):1654-1663. PubMed ID: 29509898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferon beta augments tuberous sclerosis complex 2 (TSC2)-dependent inhibition of TSC2-null ELT3 and human lymphangioleiomyomatosis-derived cell proliferation.
    Goncharova EA; Goncharov DA; Chisolm A; Spaits MS; Lim PN; Cesarone G; Khavin I; Tliba O; Amrani Y; Panettieri RA; Krymskaya VP
    Mol Pharmacol; 2008 Mar; 73(3):778-88. PubMed ID: 18094073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal tumours in a Tsc2(+/-) mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin.
    Yang J; Kalogerou M; Samsel PA; Zhang Y; Griffiths DF; Gallacher J; Sampson JR; Shen MH
    Oncogene; 2015 Feb; 34(7):922-31. PubMed ID: 24632604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells.
    Alayev A; Sun Y; Snyder RB; Berger SM; Yu JJ; Holz MK
    Cell Cycle; 2014; 13(3):371-82. PubMed ID: 24304514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Farnesyltransferase inhibitors reverse altered growth and distribution of actin filaments in Tsc-deficient cells via inhibition of both rapamycin-sensitive and -insensitive pathways.
    Gau CL; Kato-Stankiewicz J; Jiang C; Miyamoto S; Guo L; Tamanoi F
    Mol Cancer Ther; 2005 Jun; 4(6):918-26. PubMed ID: 15956249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Growth of TSC2-Null Cells by a PI3K/mTOR Inhibitor but Not by a Selective MNK1/2 Inhibitor.
    Evans JF; Rue RW; Mukhitov AR; Obraztsova K; Smith CJ; Krymskaya VP
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31878201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrous papule of the face, similar to tuberous sclerosis complex-associated angiofibroma, shows activation of the mammalian target of rapamycin pathway: evidence for a novel therapeutic strategy?
    Chan JY; Wang KH; Fang CL; Chen WY
    PLoS One; 2014; 9(2):e89467. PubMed ID: 24558502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vps34-mediated macropinocytosis in Tuberous Sclerosis Complex 2-deficient cells supports tumorigenesis.
    Filippakis H; Belaid A; Siroky B; Wu C; Alesi N; Hougard T; Nijmeh J; Lam HC; Henske EP
    Sci Rep; 2018 Sep; 8(1):14161. PubMed ID: 30242175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced sporadic renal epithelioid angiomyolipoma: case report of an extraordinary response to sirolimus linked to TSC2 mutation.
    Espinosa M; Roldán-Romero JM; Duran I; de Álava E; Apellaniz-Ruiz M; Cascón A; Garrigos C; Robledo M; Rodriguez-Antona C
    BMC Cancer; 2018 May; 18(1):561. PubMed ID: 29764404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuberous Sclerosis Complex (TSC) Inactivation Increases Neuronal Network Activity by Enhancing Ca
    Hisatsune C; Shimada T; Miyamoto A; Lee A; Yamagata K
    J Neurosci; 2021 Sep; 41(39):8134-8149. PubMed ID: 34417327
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Ho DWH; Chan LK; Chiu YT; Xu IMJ; Poon RTP; Cheung TT; Tang CN; Tang VWL; Lo ILO; Lam PWY; Yau DTW; Li MX; Wong CM; Ng IOL
    Gut; 2017 Aug; 66(8):1496-1506. PubMed ID: 27974549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling.
    Inoki K; Li Y; Xu T; Guan KL
    Genes Dev; 2003 Aug; 17(15):1829-34. PubMed ID: 12869586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic analysis of 4E-BP1 phosphorylation in neurons with Tsc2 or Depdc5 knockout.
    Iffland PH; Barnes AE; Baybis M; Crino PB
    Exp Neurol; 2020 Dec; 334():113432. PubMed ID: 32781001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.