These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Osteoblast lineage-specific effects of notch activation in the skeleton. Canalis E; Parker K; Feng JQ; Zanotti S Endocrinology; 2013 Feb; 154(2):623-34. PubMed ID: 23275471 [TBL] [Abstract][Full Text] [Related]
6. Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. Xiong J; Piemontese M; Onal M; Campbell J; Goellner JJ; Dusevich V; Bonewald L; Manolagas SC; O'Brien CA PLoS One; 2015; 10(9):e0138189. PubMed ID: 26393791 [TBL] [Abstract][Full Text] [Related]
7. The Dmp1-SOST Transgene Interacts With and Downregulates the Dmp1-Cre Transgene and the Rosa(Notch) Allele. Zanotti S; Canalis E J Cell Biochem; 2016 May; 117(5):1222-32. PubMed ID: 26456319 [TBL] [Abstract][Full Text] [Related]
8. Constitutive protein kinase A activity in osteocytes and late osteoblasts produces an anabolic effect on bone. Kao RS; Abbott MJ; Louie A; O'Carroll D; Lu W; Nissenson R Bone; 2013 Aug; 55(2):277-87. PubMed ID: 23583750 [TBL] [Abstract][Full Text] [Related]
9. Hairy and Enhancer of Split-related with YRPW motif (HEY)2 regulates bone remodeling in mice. Zanotti S; Canalis E J Biol Chem; 2013 Jul; 288(30):21547-57. PubMed ID: 23782701 [TBL] [Abstract][Full Text] [Related]
14. Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Zanotti S; Canalis E Bone; 2014 May; 62():22-8. PubMed ID: 24508387 [TBL] [Abstract][Full Text] [Related]
15. Use of antisense oligonucleotides to target Notch3 in skeletal cells. Canalis E; Carrer M; Eller T; Schilling L; Yu J PLoS One; 2022; 17(5):e0268225. PubMed ID: 35536858 [TBL] [Abstract][Full Text] [Related]
16. Osteocyte Death and Bone Overgrowth in Mice Lacking Fibroblast Growth Factor Receptors 1 and 2 in Mature Osteoblasts and Osteocytes. McKenzie J; Smith C; Karuppaiah K; Langberg J; Silva MJ; Ornitz DM J Bone Miner Res; 2019 Sep; 34(9):1660-1675. PubMed ID: 31206783 [TBL] [Abstract][Full Text] [Related]
17. Local Production of Osteoprotegerin by Osteoblasts Suppresses Bone Resorption. Cawley KM; Bustamante-Gomez NC; Guha AG; MacLeod RS; Xiong J; Gubrij I; Liu Y; Mulkey R; Palmieri M; Thostenson JD; Goellner JJ; O'Brien CA Cell Rep; 2020 Sep; 32(10):108052. PubMed ID: 32905775 [TBL] [Abstract][Full Text] [Related]
18. Direct activation of PI3K in osteoblasts and osteocytes strengthens murine bone through sex-specific actions on cortical surfaces. Wee NKY; McGregor NE; Walker EC; Poulton IJ; Dang MKM; Gooi JH; Phillips WA; Sims NA J Bone Miner Res; 2024 Aug; 39(8):1174-1187. PubMed ID: 38959852 [TBL] [Abstract][Full Text] [Related]
19. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and Sost in osteocytes at unloading. Moriishi T; Fukuyama R; Ito M; Miyazaki T; Maeno T; Kawai Y; Komori H; Komori T PLoS One; 2012; 7(6):e40143. PubMed ID: 22768243 [TBL] [Abstract][Full Text] [Related]
20. G-CSF Receptor Deletion Amplifies Cortical Bone Dysfunction in Mice With STAT3 Hyperactivation in Osteocytes. Isojima T; Walker EC; Poulton IJ; McGregor NE; Wicks IP; Gooi JH; Martin TJ; Sims NA J Bone Miner Res; 2022 Oct; 37(10):1876-1890. PubMed ID: 35856245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]