These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 33774073)

  • 1. Sago starch nanocrystal-stabilized Pickering emulsions: Stability and rheological behavior.
    Azfaralariff A; Farahfaiqah F; Joe LS; Fazry S; Mohamed M; Nazar MF; Lazim AM
    Int J Biol Macromol; 2021 Jul; 182():197-206. PubMed ID: 33774073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starch nanocrystals as particle stabilisers of oil-in-water emulsions.
    Li C; Li Y; Sun P; Yang C
    J Sci Food Agric; 2014 Jul; 94(9):1802-7. PubMed ID: 24282158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier.
    Zhai K; Pei X; Wang C; Deng Y; Tan Y; Bai Y; Zhang B; Xu K; Wang P
    Int J Biol Macromol; 2019 Jun; 131():1032-1037. PubMed ID: 30898598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of sago starch nanocrystal laurate as a food grade particle emulsifier.
    Ahmad A; Fazial FF; Khalil HPSA; Fazry S; Lazim A
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124816. PubMed ID: 37182623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of alginate in starch nanocrystals-stabilized Pickering emulsions: From physical stability and microstructure to rheology behavior.
    Cai J; Zhang D; Xie F
    Food Chem; 2024 Jan; 431():137017. PubMed ID: 37562336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size.
    Ge S; Xiong L; Li M; Liu J; Yang J; Chang R; Liang C; Sun Q
    Food Chem; 2017 Nov; 234():339-347. PubMed ID: 28551245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers.
    Xu B; Liu C; Sun H; Wang X; Huang F
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110646. PubMed ID: 31785851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology, stability, antioxidant properties, and curcumin release of oil-in-water Pickering emulsions stabilized by rice starch nanoparticles.
    Kamwilaisak K; Rittiwut K; Jutakridsada P; Iamamorphanth W; Pimsawat N; Knijnenburg JTN; Theerakulpisut S
    Int J Biol Macromol; 2022 Aug; 214():370-380. PubMed ID: 35691427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelasticity of olive oil/water Pickering emulsions stabilized with starch nanocrystals.
    Qian X; Lu Y; Xie W; Wu D
    Carbohydr Polym; 2020 Feb; 230():115575. PubMed ID: 31887857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates.
    Saari H; Wahlgren M; Rayner M; Sjöö M; Matos M
    PLoS One; 2019; 14(2):e0210690. PubMed ID: 30726246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starch nanocrystals as the particle emulsifier to stabilize caprylic/capric triglycerides-in-water emulsions.
    Qian X; Lu Y; Ge L; Yin S; Wu D
    Carbohydr Polym; 2020 Oct; 245():116561. PubMed ID: 32718647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles.
    Ye F; Miao M; Jiang B; Campanella OH; Jin Z; Zhang T
    Food Chem; 2017 Aug; 229():152-158. PubMed ID: 28372158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of properties and application of starch nanoparticles optimized prepared from different crystalline starches.
    Du C; Jiang F; Hu W; Ge W; Yu X; Du SK
    Int J Biol Macromol; 2023 Apr; 235():123735. PubMed ID: 36806775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-based Pickering emulsifier from mangosteen residues-derived sodium caseinate grafted spherical cellulose nanocrystals: Stability, rheological properties and microstructure studies.
    Yahya M; Sakti SCW; Fahmi MZ; Chuah CH; Lee HV
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128696. PubMed ID: 38072349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions.
    Zhang L; Chen DL; Wang XF; Qian JY; He XD
    Int J Biol Macromol; 2022 Oct; 219():824-834. PubMed ID: 35963347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of quinoa starch nanoparticles as a stabilizer for oil in water Pickering emulsion.
    Jiang F; Zhu Y; Hu WX; Li M; Liu Y; Feng J; Lv X; Yu X; Du SK
    Food Chem; 2023 Nov; 427():136697. PubMed ID: 37379746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthocyanin-loaded double Pickering emulsion stabilized by octenylsuccinate quinoa starch: Preparation, stability and in vitro gastrointestinal digestion.
    Lin X; Li S; Yin J; Chang F; Wang C; He X; Huang Q; Zhang B
    Int J Biol Macromol; 2020 Jun; 152():1233-1241. PubMed ID: 31765743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combination of starch nanoparticles and Tween 80 results in enhanced emulsion stability.
    Bu X; Wang X; Dai L; Ji N; Xiong L; Sun Q
    Int J Biol Macromol; 2020 Nov; 163():2048-2059. PubMed ID: 32961176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and in vitro digestibility properties of esterified maca starch with citric acid and its application as an oil-in-water (O/W) pickering emulsion stabilizer.
    Lee YK; Chang YH
    Int J Biol Macromol; 2019 Aug; 134():798-806. PubMed ID: 31102681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch.
    Yang J; Gu Z; Cheng L; Li Z; Li C; Ban X; Hong Y
    Carbohydr Polym; 2021 Jun; 262():117926. PubMed ID: 33838805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.