BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 33774157)

  • 21. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved cytosine base editors generated from TadA variants.
    Lam DK; Feliciano PR; Arif A; Bohnuud T; Fernandez TP; Gehrke JM; Grayson P; Lee KD; Ortega MA; Sawyer C; Schwaegerle ND; Peraro L; Young L; Lee SJ; Ciaramella G; Gaudelli NM
    Nat Biotechnol; 2023 May; 41(5):686-697. PubMed ID: 36624149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Intein-Mediated Split-nCas9 System for Base Editing in Plants.
    Yuan G; Lu H; De K; Hassan MM; Liu Y; Li Y; Muchero W; Abraham PE; Tuskan GA; Yang X
    ACS Synth Biol; 2022 Jul; 11(7):2513-2517. PubMed ID: 35767601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvements in the genetic editing technologies: CRISPR-Cas and beyond.
    Mingarro G; Del Olmo ML
    Gene; 2023 Feb; 852():147064. PubMed ID: 36435506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Principle and development of single base editing technology and its application in livestock breeding].
    Zhang Y; Zhang C; Wu Y; Yu R; Su J
    Sheng Wu Gong Cheng Xue Bao; 2023 Jan; 39(1):19-33. PubMed ID: 36738198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors.
    Song M; Kim HK; Lee S; Kim Y; Seo SY; Park J; Choi JW; Jang H; Shin JH; Min S; Quan Z; Kim JH; Kang HC; Yoon S; Kim HH
    Nat Biotechnol; 2020 Sep; 38(9):1037-1043. PubMed ID: 32632303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A blueprint for gene function analysis through Base Editing in the model plant Physcomitrium (Physcomitrella) patens.
    Guyon-Debast A; Alboresi A; Terret Z; Charlot F; Berthier F; Vendrell-Mir P; Casacuberta JM; Veillet F; Morosinotto T; Gallois JL; Nogué F
    New Phytol; 2021 May; 230(3):1258-1272. PubMed ID: 33421132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Base Editing Efficiencies and Outcomes Using DeepABE and DeepCBE.
    Park J; Kim HK
    Methods Mol Biol; 2023; 2606():23-32. PubMed ID: 36592305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors.
    Davis JR; Wang X; Witte IP; Huang TP; Levy JM; Raguram A; Banskota S; Seidah NG; Musunuru K; Liu DR
    Nat Biomed Eng; 2022 Nov; 6(11):1272-1283. PubMed ID: 35902773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1.
    Luo Y; Ge M; Wang B; Sun C; Wang J; Dong Y; Xi JJ
    Microb Cell Fact; 2020 Apr; 19(1):93. PubMed ID: 32334589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice.
    Villiger L; Grisch-Chan HM; Lindsay H; Ringnalda F; Pogliano CB; Allegri G; Fingerhut R; Häberle J; Matos J; Robinson MD; Thöny B; Schwank G
    Nat Med; 2018 Oct; 24(10):1519-1525. PubMed ID: 30297904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in
    Shelake RM; Pramanik D; Kim JY
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
    Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK
    Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects.
    Liang M; Sui T; Liu Z; Chen M; Liu H; Shan H; Lai L; Li Z
    Cells; 2020 Jul; 9(8):. PubMed ID: 32727031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants.
    Siegner SM; Karasu ME; Schröder MS; Kontarakis Z; Corn JE
    BMC Bioinformatics; 2021 Mar; 22(1):101. PubMed ID: 33653259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery.
    Kweon J; Jang AH; Kwon E; Kim U; Shin HR; See J; Jang G; Lee C; Koo T; Kim S; Kim Y
    Exp Mol Med; 2023 Feb; 55(2):377-384. PubMed ID: 36720917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing.
    Nguyen Tran MT; Mohd Khalid MKN; Wang Q; Walker JKR; Lidgerwood GE; Dilworth KL; Lisowski L; Pébay A; Hewitt AW
    Nat Commun; 2020 Sep; 11(1):4871. PubMed ID: 32978399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation.
    Yu H; Wu Z; Chen X; Ji Q; Tao S
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32963098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.