These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33774165)

  • 21. Sequencing and characterization of striped venus transcriptome expand resources for clam fishery genetics.
    Coppe A; Bortoluzzi S; Murari G; Marino IA; Zane L; Papetti C
    PLoS One; 2012; 7(9):e44185. PubMed ID: 23028497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo transcriptome analysis of Perna viridis highlights tissue-specific patterns for environmental studies.
    Leung PT; Ip JC; Mak SS; Qiu JW; Lam PK; Wong CK; Chan LL; Leung KM
    BMC Genomics; 2014 Sep; 15(1):804. PubMed ID: 25239240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes.
    Ashrafi H; Hill T; Stoffel K; Kozik A; Yao J; Chin-Wo SR; Van Deynze A
    BMC Genomics; 2012 Oct; 13():571. PubMed ID: 23110314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems.
    Tulin S; Aguiar D; Istrail S; Smith J
    Evodevo; 2013; 4():16. PubMed ID: 23731568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of de novo transcriptome assembly.
    Clarke K; Yang Y; Marsh R; Xie L; Zhang KK
    Sci China Life Sci; 2013 Feb; 56(2):156-62. PubMed ID: 23393031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of de novo transcriptome assembly from next-generation sequencing data.
    Surget-Groba Y; Montoya-Burgos JI
    Genome Res; 2010 Oct; 20(10):1432-40. PubMed ID: 20693479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.
    Zhang J; Ruhlman TA; Mower JP; Jansen RK
    BMC Plant Biol; 2013 Dec; 13():228. PubMed ID: 24373163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation.
    Celaj A; Markle J; Danska J; Parkinson J
    Microbiome; 2014; 2():39. PubMed ID: 25411636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut.
    Cramaro WJ; Revets D; Hunewald OE; Sinner R; Reye AL; Muller CP
    BMC Genomics; 2015 Oct; 16():871. PubMed ID: 26510422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Bellerophon pipeline, improving de novo transcriptomes and removing chimeras.
    Kerkvliet J; de Fouchier A; van Wijk M; Groot AT
    Ecol Evol; 2019 Sep; 9(18):10513-10521. PubMed ID: 31624564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance.
    Feldmeyer B; Wheat CW; Krezdorn N; Rotter B; Pfenninger M
    BMC Genomics; 2011 Jun; 12():317. PubMed ID: 21679424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined proteomic and metallomic analyses in Scrobicularia plana clams to assess environmental pollution of estuarine ecosystems.
    González-Domínguez R; Santos HM; Bebianno MJ; García-Barrera T; Gómez-Ariza JL; Capelo JL
    Mar Pollut Bull; 2016 Dec; 113(1-2):117-124. PubMed ID: 27593851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing de novo and reference-based transcriptome assembly strategies by applying them to the blood-sucking bug Rhodnius prolixus.
    Marchant A; Mougel F; Mendonça V; Quartier M; Jacquin-Joly E; da Rosa JA; Petit E; Harry M
    Insect Biochem Mol Biol; 2016 Feb; 69():25-33. PubMed ID: 26005117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequencing and de novo assembly of the Asian clam (Corbicula fluminea) transcriptome using the Illumina GAIIx method.
    Chen H; Zha J; Liang X; Bu J; Wang M; Wang Z
    PLoS One; 2013; 8(11):e79516. PubMed ID: 24244519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo assembly and characterization of foot transcriptome and microsatellite marker development for Paphia textile.
    Chen X; Li J; Xiao S; Liu X
    Gene; 2016 Jan; 576(1 Pt 3):537-43. PubMed ID: 26546834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.