These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33774193)

  • 1. Coherent light emission in cathodoluminescence when using GaAs in a scanning (transmission) electron microscope.
    Stöger-Pollach M; Pichler CF; Dan T; Zickler GA; Bukvišová K; Eibl O; Brandstätter F
    Ultramicroscopy; 2021 May; 224():113260. PubMed ID: 33774193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamentals of cathodoluminescence in a STEM: The impact of sample geometry and electron beam energy on light emission of semiconductors.
    Stöger-Pollach M; Bukvišová K; Schwarz S; Kvapil M; Šamořil T; Horák M
    Ultramicroscopy; 2019 May; 200():111-124. PubMed ID: 30856489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Cˇerenkov radiation for measuring the refractive index in thick samples by interferometric cathodoluminescence.
    Stöger-Pollach M; Löffler S; Maurer N; Bukvišová K
    Ultramicroscopy; 2020 Jul; 214():113011. PubMed ID: 32408181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of coherent and incoherent cathodoluminescence using temporal photon correlations.
    Scheucher M; Schachinger T; Spielauer T; Stöger-Pollach M; Haslinger P
    Ultramicroscopy; 2022 Nov; 241():113594. PubMed ID: 36103776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathodoluminescence in the scanning transmission electron microscope.
    Kociak M; Zagonel LF
    Ultramicroscopy; 2017 May; 176():112-131. PubMed ID: 28341557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathodoluminescence in the scanning transmission electron microscope.
    Kociak M; Zagonel LF
    Ultramicroscopy; 2017 Mar; 174():50-69. PubMed ID: 28040579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.
    Yamamoto N
    Microscopy (Oxf); 2016 Aug; 65(4):282-95. PubMed ID: 27473259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition radiation in EELS and cathodoluminescence.
    Stöger-Pollach M; Kachtík L; Miesenberger B; Retzl P
    Ultramicroscopy; 2017 Feb; 173():31-35. PubMed ID: 27907829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the distributions of bremsstrahlung X-rays, Cerenkov light, and annihilation radiations for positron emitters.
    Nakanishi K; Yamamoto S
    Appl Radiat Isot; 2021 Oct; 176():109861. PubMed ID: 34265565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of electron radiation damage to green fluorescent protein.
    Ikegami H; Akiba K; Minoda H
    Ultramicroscopy; 2021 Jun; 225():113272. PubMed ID: 33932732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of radiography applications using x-ray beams emitted by compact accelerators. Part I. Monte Carlo study of the hard x-ray spectrum.
    Marziani M; Taibi A; Di Domenico G; Gambaccini M
    Med Phys; 2009 Oct; 36(10):4683-701. PubMed ID: 19928100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.
    De Winter DA; Lebbink MN; Wiggers De Vries DF; Post JA; Drury MR
    J Microsc; 2011 Sep; 243(3):315-26. PubMed ID: 21692799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of transition radiation in cathodoluminescence imaging and spectroscopy of thin-foils.
    Mendis BG; Howkins A; Stowe D; Major JD; Durose K
    Ultramicroscopy; 2016 Aug; 167():31-42. PubMed ID: 27163963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis.
    Stöger-Pollach M; Franco H; Schattschneider P; Lazar S; Schaffer B; Grogger W; Zandbergen HW
    Micron; 2006; 37(5):396-402. PubMed ID: 16551502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially resolved cathodoluminescence of luminescent materials using an EDX detector.
    Smet PF; Van Haecke JE; Poelman D
    J Microsc; 2008 Jul; 231(Pt 1):1-8. PubMed ID: 18638184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation effect on cathodoluminescence and thermoluminescence emission of Ca-rich oxalates from the human body.
    Correcher V; Briatte C; Boronat C; Garcia-Guinea J
    Luminescence; 2018 Dec; 33(8):1438-1444. PubMed ID: 30378245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germanium Sulfide Nano-Optics Probed by STEM-Cathodoluminescence Spectroscopy.
    Sutter P; Argyropoulos C; Sutter E
    Nano Lett; 2018 Jul; 18(7):4576-4583. PubMed ID: 29883126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical characterization of extra layers at the interfaces in MOCVD InGaP/GaAs junctions by electron beam methods.
    Frigeri C; Shakhmin AA; Vinokurov DA; Zamoryanskaya MV
    Nanoscale Res Lett; 2011 Mar; 6(1):194. PubMed ID: 21711707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.