These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

733 related articles for article (PubMed ID: 33774199)

  • 1. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Ĺ ubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide-Generating Agents Improves the Therapeutic Effects of Nanomedicines.
    Islam W; Fang J; Imamura T; Etrych T; Subr V; Ulbrich K; Maeda H
    Mol Cancer Ther; 2018 Dec; 17(12):2643-2653. PubMed ID: 30232144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy.
    Wang X; Li S; Liu X; Wu X; Ye N; Yang X; Li Z
    Adv Exp Med Biol; 2021; 1295():77-95. PubMed ID: 33543456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment.
    Mao C; Li F; Zhao Y; Debinski W; Ming X
    Theranostics; 2018; 8(22):6274-6290. PubMed ID: 30613297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Brain Tumors with Nanomedicines: Overcoming Blood Brain Barrier Challenges.
    Khaitan D; Reddy PL; Ningaraj N
    Curr Clin Pharmacol; 2018; 13(2):110-119. PubMed ID: 29651960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging-assisted anticancer nanotherapy.
    Dasgupta A; Biancacci I; Kiessling F; Lammers T
    Theranostics; 2020; 10(3):956-967. PubMed ID: 31938045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors.
    Islam R; Maeda H; Fang J
    Expert Opin Drug Deliv; 2022 Feb; 19(2):199-212. PubMed ID: 33430661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcytosis-enabled active extravasation of tumor nanomedicine.
    Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y
    Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting.
    Ren L; Feng W; Shao J; Ma J; Xu M; Zhu BZ; Zheng N; Liu S
    Theranostics; 2020; 10(14):6384-6398. PubMed ID: 32483459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers.
    Yang J; Wang X; Wang B; Park K; Wooley K; Zhang S
    Adv Drug Deliv Rev; 2022 Nov; 190():114525. PubMed ID: 36100142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomedicines for the treatment of hematological malignancies.
    Deshantri AK; Varela Moreira A; Ecker V; Mandhane SN; Schiffelers RM; Buchner M; Fens MHAM
    J Control Release; 2018 Oct; 287():194-215. PubMed ID: 30165140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platinum-based combination nanomedicines for cancer therapy.
    Li Y; Lin W
    Curr Opin Chem Biol; 2023 Jun; 74():102290. PubMed ID: 36989943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy.
    Sun H; Zhang Y; Zhong Z
    Adv Drug Deliv Rev; 2018 Jul; 132():16-32. PubMed ID: 29775625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy--Problems, Solutions, and Prospects.
    Maeda H; Tsukigawa K; Fang J
    Microcirculation; 2016 Apr; 23(3):173-82. PubMed ID: 26237291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.