These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33774789)

  • 1. Real-time location algorithms of drinking water pollution sources based on domain knowledge.
    Yan X; Zhou Z; Hu C; Gong W
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46266-46280. PubMed ID: 33774789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pollution source localization in an urban water supply network based on dynamic water demand.
    Yan X; Zhu Z; Li T
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):17901-17910. PubMed ID: 29079984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selecting the best location of water quality sensors in water distribution networks by considering the importance of nodes and contaminations using NSGA-III (case study: Zahedan water distribution network, Iran).
    Harif S; Azizyan G; Dehghani Darmian M; Givehchi M
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53229-53252. PubMed ID: 36853532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intelligent traceability method of water pollution based on dynamic multi-mode optimization.
    Wu Q; Wu B; Yan X
    Neural Comput Appl; 2023; 35(3):2059-2076. PubMed ID: 35221540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient k-means clustering and greedy selection-based reduction of nodal search space for optimization of sensor placement in the water distribution networks.
    Gautam DK; Kotecha P; Subbiah S
    Water Res; 2022 Jul; 220():118666. PubMed ID: 35709596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.
    Ma J; Meng F; Zhou Y; Wang Y; Shi P
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29462929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain Knowledge-Based Evolutionary Reinforcement Learning for Sensor Placement.
    Song M; Hu C; Gong W; Yan X
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum Water Quality Monitoring Network Design for Bidirectional River Systems.
    Zhu X; Yue Y; Wong PWH; Zhang Y; Tan J
    Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29364851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of the possible scenarios for the optimal locating of quality sensors in the water distribution networks with uncertain contamination.
    Jafari H; Rajaee T; Nazif S
    J Water Health; 2020 Oct; 18(5):704-721. PubMed ID: 33095194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems.
    Ayvaz MT
    J Contam Hydrol; 2010 Sep; 117(1-4):46-59. PubMed ID: 20633952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reinforcement learning based valve scheduling for pollution isolation in water distribution network.
    Hu CY; Cai JY; Zeng Z; Yan XS; Gong WY; Wang L
    Math Biosci Eng; 2019 Sep; 17(1):105-121. PubMed ID: 31731342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-objective optimization of hydrant flushing in a water distribution system using a fast hybrid technique.
    Shoorangiz M; Nikoo MR; Šimůnek J; Gandomi AH; Adamowski JF; Al-Wardy M
    J Environ Manage; 2023 May; 334():117463. PubMed ID: 36801802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of clandestine groundwater pollution sources using heuristics optimization algorithms: a comparison between simulated annealing and particle swarm optimization.
    Chakraborty A; Prakash O
    Environ Monit Assess; 2020 Nov; 192(12):791. PubMed ID: 33242155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing.
    Cheng M; Li J
    Water Res; 2023 Aug; 242():120313. PubMed ID: 37451191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions.
    Tanyimboh TT; Seyoum AG
    J Environ Manage; 2016 Dec; 183():133-141. PubMed ID: 27589918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective optimization of water distribution networks based on non-dominated sequencing genetic algorithm.
    Tao Y; Yan D; Yang H; Ma L; Kou C
    PLoS One; 2022; 17(11):e0277954. PubMed ID: 36441704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An auto-adaptive optimization approach for targeting nonpoint source pollution control practices.
    Chen L; Wei G; Shen Z
    Sci Rep; 2015 Oct; 5():15393. PubMed ID: 26487474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-dimensional dynamic fuzzy monitoring model for the effect of water pollution treatment.
    Li H; Cao Y; Su L
    Environ Monit Assess; 2019 May; 191(6):352. PubMed ID: 31069546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid neural-genetic algorithm for reservoir water quality management.
    Kuo JT; Wang YY; Lung WS
    Water Res; 2006 Apr; 40(7):1367-76. PubMed ID: 16545860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks.
    Maheshwari A; Abokifa A; Gudi RD; Biswas P
    J Environ Manage; 2020 Dec; 276():111186. PubMed ID: 32906070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.