BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3377513)

  • 1. Studies on the autoxidation of dopamine: interaction with ascorbate.
    Pileblad E; Slivka A; Bratvold D; Cohen G
    Arch Biochem Biophys; 1988 Jun; 263(2):447-52. PubMed ID: 3377513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of superoxide dismutase and catalase on catalysis of 6-hydroxydopamine and 6-aminodopamine autoxidation by iron and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1981 Aug; 30(16):2279-85. PubMed ID: 6794574
    [No Abstract]   [Full Text] [Related]  

  • 3. A kinetic study on iron stimulation of the xanthine oxidase dependent oxidation of ascorbate.
    Løvstad RA
    Biometals; 2003 Sep; 16(3):435-9. PubMed ID: 12680706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper catalyzed oxidation of ascorbate: chemical and ESR studies.
    Varma SD; Shen X; Lohman W
    Lens Eye Toxic Res; 1990; 7(1):49-66. PubMed ID: 2177351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between sodium ascorbate and dopamine.
    Sakagami H; Satoh K; Ida Y; Hosaka M; Arakawa H; Maeda M
    Free Radic Biol Med; 1998 Dec; 25(9):1013-20. PubMed ID: 9870554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between metals, ligands, and oxygen in the autoxidation of 6-hydroxydopamine: mechanisms by which metal chelation enhances inhibition by superoxide dismutase.
    Bandy B; Davison AJ
    Arch Biochem Biophys; 1987 Dec; 259(2):305-15. PubMed ID: 3122661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbate autoxidation in the presence of iron and copper chelates.
    Buettner GR
    Free Radic Res Commun; 1986; 1(6):349-53. PubMed ID: 2851502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism.
    Samuni A; Aronovitch J; Godinger D; Chevion M; Czapski G
    Eur J Biochem; 1983 Dec; 137(1-2):119-24. PubMed ID: 6317379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox cycling and generation of reactive oxygen species in commercial infant formulas.
    Boatright WL; Crum AD
    Food Chem; 2016 Apr; 196():189-95. PubMed ID: 26593482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potent antitumor activity of novel iron chelators derived from di-2-pyridylketone isonicotinoyl hydrazone involves fenton-derived free radical generation.
    Chaston TB; Watts RN; Yuan J; Richardson DR
    Clin Cancer Res; 2004 Nov; 10(21):7365-74. PubMed ID: 15534113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential new insights into the molecular mechanisms of methamphetamine-induced neurodegeneration.
    Wrona MZ; Yang Z; Zhang F; Dryhurst G
    NIDA Res Monogr; 1997; 173():146-74. PubMed ID: 9260188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the mechanism of action of microperoxidase-11, (MP11), a potential anti-cataract agent, with hydrogen peroxide and ascorbate.
    Spector A; Zhou W; Ma W; Chignell CF; Reszka KJ
    Exp Eye Res; 2000 Aug; 71(2):183-94. PubMed ID: 10930323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells.
    Ripple MO; Henry WF; Rago RP; Wilding G
    J Natl Cancer Inst; 1997 Jan; 89(1):40-8. PubMed ID: 8978405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the ascorbate- and phenolic-dependent generation of hydrogen peroxide in Dulbecco's Modified Eagles Medium.
    Wee LM; Long LH; Whiteman M; Halliwell B
    Free Radic Res; 2003 Oct; 37(10):1123-30. PubMed ID: 14703802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ascorbate on the DT-diaphorase-mediated redox cycling of 2-methyl-1,4-naphthoquinone.
    Jarabak R; Jarabak J
    Arch Biochem Biophys; 1995 Apr; 318(2):418-23. PubMed ID: 7733672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic actions of the pesticide metabolite 2-hydroxyquinoxaline: destruction of antioxidant vitamins and biogenic amines - implications of organic redox cycling.
    Behrends A; Hardeland R; Ness H; Grube S; Poeggeler B; Haldar C
    Redox Rep; 2004; 9(5):279-88. PubMed ID: 15606981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic metals, ascorbate and free radicals: combinations to avoid.
    Buettner GR; Jurkiewicz BA
    Radiat Res; 1996 May; 145(5):532-41. PubMed ID: 8619018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition metals as catalysts of "autoxidation" reactions.
    Miller DM; Buettner GR; Aust SD
    Free Radic Biol Med; 1990; 8(1):95-108. PubMed ID: 2182396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study.
    Verrax J; Delvaux M; Beghein N; Taper H; Gallez B; Buc Calderon P
    Free Radic Res; 2005 Jun; 39(6):649-57. PubMed ID: 16036343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.