These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33775543)

  • 1. Effect of honeycomb, granular, and powder activated carbon additives on continuous lactic acid fermentation of complex food waste with mixed inoculation.
    Wang Q; Li H; Feng K
    J Biosci Bioeng; 2021 Jun; 131(6):655-662. PubMed ID: 33775543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of microbial community structure in lactic acid fermentation from kitchen waste].
    Liu JG; Wang QH; Wang S; Sun XH; Qiu TL; Li H
    Huan Jing Ke Xue; 2012 Sep; 33(9):3236-40. PubMed ID: 23243886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of lactic acid from food wastes.
    Kim KI; Kim WK; Seo DK; Yoo IS; Kim EK; Yoon HH
    Appl Biochem Biotechnol; 2003; 105 -108():637-47. PubMed ID: 12721443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A closed loop for municipal organic solid waste by lactic acid fermentation.
    Probst M; Walde J; Pümpel T; Wagner AO; Insam H
    Bioresour Technol; 2015 Jan; 175():142-51. PubMed ID: 25459815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: Effects of substrate and thermal pretreatment temperature.
    Li J; Zhang W; Li X; Ye T; Gan Y; Zhang A; Chen H; Xue G; Liu Y
    Bioresour Technol; 2018 Jan; 247():890-896. PubMed ID: 30060427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling.
    Ye T; Li X; Zhang T; Su Y; Zhang W; Li J; Gan Y; Zhang A; Liu Y; Xue G
    Waste Manag; 2018 Jun; 76():414-422. PubMed ID: 29571568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a mixture of lactic acid bacteria applied as a freeze-dried or fresh culture on the fermentation of alfalfa silage.
    Kizilsimsek M; Schmidt RJ; Kung L
    J Dairy Sci; 2007 Dec; 90(12):5698-705. PubMed ID: 18024762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano iron materials enhance food waste fermentation.
    Wang Q; Feng K; Li H
    Bioresour Technol; 2020 Nov; 315():123804. PubMed ID: 32673984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.
    Tang J; Wang X; Hu Y; Zhang Y; Li Y
    Waste Manag; 2016 Jun; 52():278-85. PubMed ID: 27040090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biowaste: a Lactobacillus habitat and lactic acid fermentation substrate.
    Probst M; Fritschi A; Wagner A; Insam H
    Bioresour Technol; 2013 Sep; 143():647-52. PubMed ID: 23816359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promote lactic acid production from food waste fermentation using biogas slurry recirculation.
    Wang Q; Yang L; Feng K; Li H; Deng Z; Liu J
    Bioresour Technol; 2021 Oct; 337():125393. PubMed ID: 34120058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid and methane: improved exploitation of biowaste potential.
    Dreschke G; Probst M; Walter A; Pümpel T; Walde J; Insam H
    Bioresour Technol; 2015 Jan; 176():47-55. PubMed ID: 25460983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations.
    Bonk F; Bastidas-Oyanedel JR; Yousef AF; Schmidt JE
    Bioresour Technol; 2017 Aug; 238():416-424. PubMed ID: 28458175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caproic acid production from food waste using indigenous microbiota: Performance and mechanisms.
    Tang J; Yang H; Pu Y; Hu Y; Huang J; Jin N; He X; Wang XC
    Bioresour Technol; 2023 Nov; 387():129687. PubMed ID: 37595807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preservation of hatchery waste by lactic acid fermentation. 1. Laboratory scale fermentation.
    Deshmukh AC; Patterson PH
    Poult Sci; 1997 Sep; 76(9):1212-9. PubMed ID: 9276882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct lactic acid production from household food waste by lactic acid bacteria.
    Song L; Liu S; Liu R; Yang D; Dai X
    Sci Total Environ; 2022 Sep; 840():156479. PubMed ID: 35679945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota.
    Kwan TH; Hu Y; Lin CS
    Bioresour Technol; 2016 Oct; 217():129-36. PubMed ID: 26873283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.
    Liang S; Gliniewicz K; Mendes-Soares H; Settles ML; Forney LJ; Coats ER; McDonald AG
    Bioresour Technol; 2015 Mar; 179():268-274. PubMed ID: 25545096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.