BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33775559)

  • 1. Satellite Observations and Malaria: New Opportunities for Research and Applications.
    Wimberly MC; de Beurs KM; Loboda TV; Pan WK
    Trends Parasitol; 2021 Jun; 37(6):525-537. PubMed ID: 33775559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the accuracy of satellite-based methods to estimate residential proximity to agricultural crops.
    Hyland C; McConnell K; DeYoung E; Curl CL
    J Expo Sci Environ Epidemiol; 2024 Mar; 34(2):294-307. PubMed ID: 36002734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices-a case study of Chennai Metropolitan Area, India.
    M M; M K
    Environ Monit Assess; 2019 Dec; 192(1):15. PubMed ID: 31811511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of spatial technologies with applications for malaria transmission modelling and control in Africa.
    Gebreslasie MT
    Geospat Health; 2015 Nov; 10(2):328. PubMed ID: 26618308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multispectral analysis-ready satellite data for three East African mountain ecosystems.
    Bhandari N; Bald L; Wraase L; Zeuss D
    Sci Data; 2024 May; 11(1):473. PubMed ID: 38724591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on drone-based harmful algae blooms monitoring.
    Wu D; Li R; Zhang F; Liu J
    Environ Monit Assess; 2019 Mar; 191(4):211. PubMed ID: 30852736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the environmental determinants of malaria and schistosomiasis in the Philippines using Remote Sensing and Geographic Information Systems.
    Leonardo LR; Rivera PT; Crisostomo BA; Sarol JN; Bantayan NC; Tiu WU; Bergquist NR
    Parassitologia; 2005 Mar; 47(1):105-14. PubMed ID: 16044679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico.
    Pope KO; Rejmankova E; Savage HM; Arredondo-Jimenez JI; Rodriguez MH; Roberts DR
    Ecol Appl; 1994 Feb; 4(1):81-90. PubMed ID: 11539870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea.
    Kim YH; Son S; Kim HC; Kim B; Park YG; Nam J; Ryu J
    Environ Int; 2020 Jan; 134():105301. PubMed ID: 31743805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale Effect of Land Cover Classification from Multi-Resolution Satellite Remote Sensing Data.
    Li R; Gao X; Shi F; Zhang H
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping malaria risk using geographic information systems and remote sensing: The case of Bahir Dar City, Ethiopia.
    Minale AS; Alemu K
    Geospat Health; 2018 May; 13(1):660. PubMed ID: 29772888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping intra-urban malaria risk using high resolution satellite imagery: a case study of Dar es Salaam.
    Kabaria CW; Molteni F; Mandike R; Chacky F; Noor AM; Snow RW; Linard C
    Int J Health Geogr; 2016 Jul; 15(1):26. PubMed ID: 27473186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial heterogeneity and temporal evolution of malaria transmission risk in Dakar, Senegal, according to remotely sensed environmental data.
    Machault V; Vignolles C; Pagès F; Gadiaga L; Gaye A; Sokhna C; Trape JF; Lacaux JP; Rogier C
    Malar J; 2010 Sep; 9():252. PubMed ID: 20815867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ten ways remote sensing can contribute to conservation.
    Rose RA; Byler D; Eastman JR; Fleishman E; Geller G; Goetz S; Guild L; Hamilton H; Hansen M; Headley R; Hewson J; Horning N; Kaplin BA; Laporte N; Leidner A; Leimgruber P; Morisette J; Musinsky J; Pintea L; Prados A; Radeloff VC; Rowen M; Saatchi S; Schill S; Tabor K; Turner W; Vodacek A; Vogelmann J; Wegmann M; Wilkie D; Wilson C
    Conserv Biol; 2015 Apr; 29(2):350-9. PubMed ID: 25319024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations.
    Kostakis I; Röttgers R; Orkney A; Bouman HA; Porter M; Cottier F; Berge J; McKee D
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190367. PubMed ID: 32862821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017.
    Makinde EO; Oyelade EO
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):66-74. PubMed ID: 31201700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of land use/land cover changes using remote sensing data and GIS at an urban area, Tirupati, India.
    Mallupattu PK; Sreenivasula Reddy JR
    ScientificWorldJournal; 2013; 2013():268623. PubMed ID: 23781152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Build a global Earth observatory.
    Kulmala M
    Nature; 2018 Jan; 553(7686):21-23. PubMed ID: 29300034
    [No Abstract]   [Full Text] [Related]  

  • 20. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM).
    Slonecker ET; Jones DK; Pellerin BA
    Mar Pollut Bull; 2016 Jun; 107(2):518-27. PubMed ID: 27004998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.