BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33775567)

  • 1. Quality assurance-based optimization (QAO): Towards improving patient-specific quality assurance in volumetric modulated arc therapy plans using machine learning.
    Wall PDH; Fontenot JD
    Phys Med; 2021 Jul; 87():136-143. PubMed ID: 33775567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of complexity and deliverability of prostate cancer treatment plans designed with a knowledge-based VMAT planning technique.
    Wall PDH; Fontenot JD
    J Appl Clin Med Phys; 2020 Jan; 21(1):69-77. PubMed ID: 31816175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans.
    Li G; Wu K; Peng G; Zhang Y; Bai S
    Med Dosim; 2014; 39(4):309-13. PubMed ID: 24958705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of patient-specific quality assurance for volumetric modulated arc therapy using radiomics-based machine learning with dose distribution.
    Ishizaka N; Kinoshita T; Sakai M; Tanabe S; Nakano H; Tanabe S; Nakamura S; Mayumi K; Akamatsu S; Nishikata T; Takizawa T; Yamada T; Sakai H; Kaidu M; Sasamoto R; Ishikawa H; Utsunomiya S
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14215. PubMed ID: 37987544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy.
    Masi L; Doro R; Favuzza V; Cipressi S; Livi L
    Med Phys; 2013 Jul; 40(7):071718. PubMed ID: 23822422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy.
    Park SY; Kim IH; Ye SJ; Carlson J; Park JM
    Med Phys; 2014 Nov; 41(11):111718. PubMed ID: 25370632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online adaptation and verification of VMAT.
    Crijns W; Defraene G; Van Herck H; Depuydt T; Haustermans K; Maes F; Van den Heuvel F
    Med Phys; 2015 Jul; 42(7):3877-91. PubMed ID: 26133589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-generated decision boundaries for prediction and exploration of patient-specific quality assurance failures in stereotactic radiosurgery plans.
    Braun J; Quirk S; Tchistiakova E
    Med Phys; 2022 Mar; 49(3):1955-1963. PubMed ID: 35064564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of database quality in knowledge-based treatment planning for prostate cancer.
    Wall PDH; Carver RL; Fontenot JD
    Pract Radiat Oncol; 2018; 8(6):437-444. PubMed ID: 29730280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning for Patient-Specific Quality Assurance of VMAT: Prediction and Classification Accuracy.
    Li J; Wang L; Zhang X; Liu L; Li J; Chan MF; Sui J; Yang R
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):893-902. PubMed ID: 31377162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting deliverability of volumetric-modulated arc therapy (VMAT) plans using aperture complexity analysis.
    Younge KC; Roberts D; Janes LA; Anderson C; Moran JM; Matuszak MM
    J Appl Clin Med Phys; 2016 Jul; 17(4):124-131. PubMed ID: 27455504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of multi-criteria optimization (MCO) parameter efficiency in volumetric modulated arc therapy (VMAT) treatment planning using machine learning (ML).
    Harrer C; Ullrich W; Wilkens JJ
    Phys Med; 2021 Jan; 81():102-113. PubMed ID: 33445122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting MLC modeling errors using radiomics-based machine learning in patient-specific QA with an EPID for intensity-modulated radiation therapy.
    Sakai M; Nakano H; Kawahara D; Tanabe S; Takizawa T; Narita A; Yamada T; Sakai H; Ueda M; Sasamoto R; Kaidu M; Aoyama H; Ishikawa H; Utsunomiya S
    Med Phys; 2021 Mar; 48(3):991-1002. PubMed ID: 33382467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric features-driven machine learning model for DVH prediction in VMAT treatment planning.
    Ma M; Kovalchuk N; Buyyounouski MK; Xing L; Yang Y
    Med Phys; 2019 Feb; 46(2):857-867. PubMed ID: 30536442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning.
    Lam D; Zhang X; Li H; Deshan Y; Schott B; Zhao T; Zhang W; Mutic S; Sun B
    Med Phys; 2019 Oct; 46(10):4666-4675. PubMed ID: 31386761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilizing knowledge from prior plans in the evaluation of quality assurance.
    Stanhope C; Wu QJ; Yuan L; Liu J; Hood R; Yin FF; Adamson J
    Phys Med Biol; 2015 Jun; 60(12):4873-91. PubMed ID: 26056801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vector-model-supported approach in prostate plan optimization.
    Liu ESF; Wu VWC; Harris B; Lehman M; Pryor D; Chan LWC
    Med Dosim; 2017 Summer; 42(2):79-84. PubMed ID: 28318936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric-modulated arc therapy planning using multicriteria optimization for localized prostate cancer.
    Ghandour S; Matzinger O; Pachoud M
    J Appl Clin Med Phys; 2015 May; 16(3):5410. PubMed ID: 26103500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric quality, accuracy, and deliverability of modulated radiotherapy treatments for spinal metastases.
    Kairn T; Papworth D; Crowe SB; Anderson J; Christie DR
    Med Dosim; 2016; 41(3):258-66. PubMed ID: 27545010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge-based planning for intensity-modulated radiation therapy: A review of data-driven approaches.
    Ge Y; Wu QJ
    Med Phys; 2019 Jun; 46(6):2760-2775. PubMed ID: 30963580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.