These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33776151)

  • 1. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine.
    Wua Q; Lane CR; Li X; Zhao K; Zhou Y; Clinton N; DeVries B; Golden HE; Lang MW
    Remote Sens Environ; 2019 Jul; 228():1-13. PubMed ID: 33776151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Nebraska playa wetland inundation status during 1985-2015 using Landsat data and Google Earth Engine.
    Tang Z; Li Y; Gu Y; Jiang W; Xue Y; Hu Q; LaGrange T; Bishop A; Drahota J; Li R
    Environ Monit Assess; 2016 Dec; 188(12):654. PubMed ID: 27826819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating Anthropogenic Wetland Loss by Concurrently Tracking Inundation and Land Cover Disturbance across the Mid-Atlantic Region, U.S.
    Vanderhoof MK; Christensen J; Beal YG; DeVries B; Lang MW; Hwang N; Mazzarella C; Jones JW
    Remote Sens (Basel); 2020 May; 12(9):1464. PubMed ID: 34327008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions.
    Evenson GR; Golden HE; Lane CR; McLaughlin DL; D'Amico E
    Ecol Appl; 2018 Jun; 28(4):953-966. PubMed ID: 29437239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery.
    Wu Q; Lane CR
    Hydrol Earth Syst Sci; 2017; 21(7):3579-3595. PubMed ID: 30147279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Wetland Mapping: Integrating Sentinel-1/2, GEDI Data, and Google Earth Engine.
    Jafarzadeh H; Mahdianpari M; Gill EW; Mohammadimanesh F
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A watershed-scale model for depressional wetland-rich landscapes.
    Evenson GR; Jones CN; McLaughlin DL; Golden HE; Lane CR; DeVries B; Alexander LC; Lang MW; McCarty GW; Sharifi A
    J Hydrol X; 2018 Dec; 1():. PubMed ID: 31448367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Headwater streams and inland wetlands: Status and advancements of geospatial datasets and maps across the United States.
    Christensen JR; Golden HE; Alexander LC; Pickard BR; Fritz KM; Lane CR; Weber MH; Kwok RM; Keefer MN
    Earth Sci Rev; 2022 Dec; 235():1-24. PubMed ID: 36970305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware.
    Vanderhoof MK; Distler HE; Lang MW; Alexander LC
    Wetl Ecol Manag; 2017 Jun; 26(1):63-86. PubMed ID: 36204687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effects of precipitation and groundwater extraction on freshwater wetland inundation.
    Balerna JA; Kramer AM; Landry SM; Rains MC; Lewis DB
    J Environ Manage; 2023 Jul; 337():117690. PubMed ID: 36933535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns and drivers for wetland connections in the Prairie Pothole Region, United States.
    Vanderhoof MK; Christensen JR; Alexander LC
    Wetl Ecol Manag; 2017; 25(3):275-297. PubMed ID: 32025096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited shifts in the distribution of migratory bird breeding habitat density in response to future changes in climate.
    McKenna OP; Mushet DM; Kucia SR; McCulloch-Huseby EC
    Ecol Appl; 2021 Oct; 31(7):e02428. PubMed ID: 34318972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of satellite greenness to predict plant diversity among wetland types, ecoregions, and disturbance levels.
    Taddeo S; Dronova I; Harris K
    Ecol Appl; 2019 Oct; 29(7):e01961. PubMed ID: 31240799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining human disturbances and inundation dynamics in China's marsh wetlands by using time series remote sensing data.
    Lu D; Chang J
    Sci Total Environ; 2023 Mar; 863():160961. PubMed ID: 36529399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iranian wetland inventory map at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform.
    Hemati M; Hasanlou M; Mahdianpari M; Mohammadimanesh F
    Environ Monit Assess; 2023 Apr; 195(5):558. PubMed ID: 37046022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying shorebird habitat in managed wetlands by modeling shallow water depth dynamics.
    Schaffer-Smith D; Swenson JJ; Reiter ME; Isola JE
    Ecol Appl; 2018 Sep; 28(6):1534-1545. PubMed ID: 29694689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential role of very high-resolution imagery to characterise lake, wetland and stream systems across the Prairie Pothole Region, United States.
    Vanderhoof MK; Lane CR
    Int J Remote Sens; 2019 May; 40(15):5768-5798. PubMed ID: 33408426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change causes declines and greater extremes in wetland inundation in a region important for wetland birds.
    Londe DW; Davis CA; Loss SR; Robertson EP; Haukos DA; Hovick TJ
    Ecol Appl; 2024 Mar; 34(2):e2930. PubMed ID: 37941497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Lake Expansion in Altering the Wetland Landscape of the Prairie Pothole Region, United States.
    Vanderhoof MK; Alexander LC
    Wetlands (Wilmington); 2016; 36(Suppl 2):309-321. PubMed ID: 32669752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping.
    Pricope NG; Halls JN; Mapes KL; Baxley JB; Wu JJ
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.