These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33776151)

  • 21. Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John's, NL, Canada.
    Mahdianpari M; Granger JE; Mohammadimanesh F; Warren S; Puestow T; Salehi B; Brisco B
    J Environ Manage; 2021 Feb; 280():111676. PubMed ID: 33246750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.
    Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR
    J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near real-time flood inundation and hazard mapping of Baitarani River Basin using Google Earth Engine and SAR imagery.
    Atchyuth BAS; Swain R; Das P
    Environ Monit Assess; 2023 Oct; 195(11):1331. PubMed ID: 37848573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal-based automated inundation mapping of Ramsar wetlands using Google Earth Engine.
    Goyal MK; Rakkasagi S; Shaga S; Zhang TC; Surampalli RY; Dubey S
    Sci Rep; 2023 Oct; 13(1):17324. PubMed ID: 37833285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy.
    Sofaer HR; Skagen SK; Barsugli JJ; Rashford BS; Reese GC; Hoeting JA; Wood AW; Noon BR
    Ecol Appl; 2016 Sep; 26(6):1677-1692. PubMed ID: 27755694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intensified inundation shifts a freshwater wetland from a CO
    Zhao J; Malone SL; Oberbauer SF; Olivas PC; Schedlbauer JL; Staudhammer CL; Starr G
    Glob Chang Biol; 2019 Oct; 25(10):3319-3333. PubMed ID: 31148318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review of Wetland Remote Sensing.
    Guo M; Li J; Sheng C; Xu J; Wu L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28379174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine.
    Wang X; Xiao X; Zou Z; Hou L; Qin Y; Dong J; Doughty RB; Chen B; Zhang X; Chen Y; Ma J; Zhao B; Li B
    ISPRS J Photogramm Remote Sens; 2020 May; 163():312-326. PubMed ID: 32405155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deriving wetland-cover types (WCTs) from integration of multispectral indices based on Earth observation data.
    Singh M; Allaka S; Gupta PK; Patel JG; Sinha R
    Environ Monit Assess; 2022 Oct; 194(12):878. PubMed ID: 36229746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping potential, existing and efficient wetlands using free remote sensing data.
    Rapinel S; Fabre E; Dufour S; Arvor D; Mony C; Hubert-Moy L
    J Environ Manage; 2019 Oct; 247():829-839. PubMed ID: 31336348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8.
    Sánchez-Espinosa A; Schröder C
    J Environ Manage; 2019 Oct; 247():484-498. PubMed ID: 31254763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.
    Werner BA; Johnson WC; Guntenspergen GR
    Ecol Evol; 2013 Sep; 3(10):3471-82. PubMed ID: 24223283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.
    Deane DC; Nicol JM; Gehrig SL; Harding C; Aldridge KT; Goodman AM; Brookes JD
    Ecol Appl; 2017 Jun; 27(4):1351-1364. PubMed ID: 28263423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape.
    Van Meter KJ; Basu NB
    Ecol Appl; 2015 Mar; 25(2):451-65. PubMed ID: 26263667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat.
    DU J; Kimball JS; Galantowicz J; Kim SB; Chan SK; Reichle R; Jones LA; Watts JD
    Remote Sens Environ; 2018 Aug; 213():1-17. PubMed ID: 30050230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Building a potential wetland restoration indicator for the contiguous United States.
    Horvath EK; Christensen JR; Mehaffey MH; Neale AC
    Ecol Indic; 2017; 83():462-473. PubMed ID: 29706804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remote sensing and GIS for wetland inventory, mapping and change analysis.
    Rebelo LM; Finlayson CM; Nagabhatla N
    J Environ Manage; 2009 May; 90(7):2144-53. PubMed ID: 18367311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonality of inundation in geographically isolated wetlands across the United States.
    Park J; Kumar M; Lane CR; Basu NB
    Environ Res Lett; 2022 Apr; 17(5):1-54005. PubMed ID: 35662858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal heterogeneity of inundation pattern of floodplain lake wetlands and impact on wetland vegetation.
    Huang A; Liu X; Peng W; Dong F; Han Z; Du F; Ma B; Wang W
    Sci Total Environ; 2023 Dec; 905():167831. PubMed ID: 37839489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential assessment of designations of wetland status using two delineation methods.
    Wu M; Kalma D; Treadwell-Steitz C
    Environ Manage; 2014 Jul; 54(1):23-9. PubMed ID: 24748237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.