These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 33776183)
1. Expansion of human mesenchymal stem/stromal cells on temporary liquid microcarriers. Hanga MP; Nienow AW; Murasiewicz H; Pacek AW; Hewitt CJ; Coopman K J Chem Technol Biotechnol; 2021 Apr; 96(4):930-940. PubMed ID: 33776183 [TBL] [Abstract][Full Text] [Related]
2. Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. Hanga MP; Murasiewicz H; Pacek AW; Nienow AW; Coopman K; Hewitt CJ J Chem Technol Biotechnol; 2017 Jul; 92(7):1577-1589. PubMed ID: 28706339 [TBL] [Abstract][Full Text] [Related]
3. Expansion of human mesenchymal stem cells on poly(vinyl alcohol) microcarriers. Kaneko M; Sato A; Ayano S; Fujita A; Kobayashi G; Ito A J Biosci Bioeng; 2023 Nov; 136(5):407-414. PubMed ID: 37657971 [TBL] [Abstract][Full Text] [Related]
4. Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. Hervy M; Weber JL; Pecheul M; Dolley-Sonneville P; Henry D; Zhou Y; Melkoumian Z PLoS One; 2014; 9(3):e92120. PubMed ID: 24638103 [TBL] [Abstract][Full Text] [Related]
5. Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Heathman TR; Glyn VA; Picken A; Rafiq QA; Coopman K; Nienow AW; Kara B; Hewitt CJ Biotechnol Bioeng; 2015 Aug; 112(8):1696-707. PubMed ID: 25727395 [TBL] [Abstract][Full Text] [Related]
6. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Yan X; Zhang K; Yang Y; Deng D; Lyu C; Xu H; Liu W; Du Y Tissue Eng Part C Methods; 2020 May; 26(5):263-275. PubMed ID: 32268824 [TBL] [Abstract][Full Text] [Related]
7. Scalable manufacturing of gene-modified human mesenchymal stromal cells with microcarriers in spinner flasks. Couto PS; Stibbs DJ; Rotondi MC; Takeuchi Y; Rafiq QA Appl Microbiol Biotechnol; 2023 Sep; 107(18):5669-5685. PubMed ID: 37470820 [TBL] [Abstract][Full Text] [Related]
8. Growth and functional harvesting of human mesenchymal stromal cells cultured on a microcarrier-based system. Caruso SR; Orellana MD; Mizukami A; Fernandes TR; Fontes AM; Suazo CA; Oliveira VC; Covas DT; Swiech K Biotechnol Prog; 2014; 30(4):889-95. PubMed ID: 24574042 [TBL] [Abstract][Full Text] [Related]
9. Effects of agitation rate on aggregation during beads-to-beads subcultivation of microcarrier culture of human mesenchymal stem cells. Takahashi I; Sato K; Mera H; Wakitani S; Takagi M Cytotechnology; 2017 Jun; 69(3):503-509. PubMed ID: 27352111 [TBL] [Abstract][Full Text] [Related]
10. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Haskell A; White BP; Rogers RE; Goebel E; Lopez MG; Syvyk AE; de Oliveira DA; Barreda HA; Benton J; Benavides OR; Dalal S; Bae E; Zhang Y; Maitland K; Nikolov Z; Liu F; Lee RH; Kaunas R; Gregory CA Cytotherapy; 2024 Apr; 26(4):372-382. PubMed ID: 38363250 [TBL] [Abstract][Full Text] [Related]
11. Facile bead-to-bead cell-transfer method for serial subculture and large-scale expansion of human mesenchymal stem cells in bioreactors. Chen S; Sato Y; Tada Y; Suzuki Y; Takahashi R; Okanojo M; Nakashima K Stem Cells Transl Med; 2021 Sep; 10(9):1329-1342. PubMed ID: 34008349 [TBL] [Abstract][Full Text] [Related]
12. Critical attributes of human early mesenchymal stromal cell-laden microcarrier constructs for improved chondrogenic differentiation. Lin YM; Lee J; Lim JFY; Choolani M; Chan JKY; Reuveny S; Oh SKW Stem Cell Res Ther; 2017 May; 8(1):93. PubMed ID: 28482913 [TBL] [Abstract][Full Text] [Related]
13. Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Heathman TR; Stolzing A; Fabian C; Rafiq QA; Coopman K; Nienow AW; Kara B; Hewitt CJ Cytotherapy; 2016 Apr; 18(4):523-35. PubMed ID: 26971681 [TBL] [Abstract][Full Text] [Related]
14. Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion. Dias AD; Elicson JM; Murphy WL Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28509413 [TBL] [Abstract][Full Text] [Related]
15. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Tsai AC; Jeske R; Chen X; Yuan X; Li Y Front Bioeng Biotechnol; 2020; 8():640. PubMed ID: 32671039 [TBL] [Abstract][Full Text] [Related]
16. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor. Tsai AC; Ma T Methods Mol Biol; 2016; 1502():77-86. PubMed ID: 27032950 [TBL] [Abstract][Full Text] [Related]
17. Dissolvable Gelatin-Based Microcarriers Generated through Droplet Microfluidics for Expansion and Culture of Mesenchymal Stromal Cells. Ng EX; Wang M; Neo SH; Tee CA; Chen CH; Van Vliet KJ Biotechnol J; 2021 Mar; 16(3):e2000048. PubMed ID: 33052012 [TBL] [Abstract][Full Text] [Related]
18. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells. Li C; Qian Y; Zhao S; Yin Y; Li J Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():43-53. PubMed ID: 27127027 [TBL] [Abstract][Full Text] [Related]
19. Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor. Yuan X; Tsai AC; Farrance I; Rowley J; Ma T Biochem Eng J; 2018 Mar; 131():39-46. PubMed ID: 29736144 [TBL] [Abstract][Full Text] [Related]
20. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Silva Couto P; Rotondi MC; Bersenev A; Hewitt CJ; Nienow AW; Verter F; Rafiq QA Biotechnol Adv; 2020 Dec; 45():107636. PubMed ID: 32980437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]