These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33776405)

  • 1. Efficient Delineation of Nested Depression Hierarchy in Digital Elevation Models for Hydrological Analysis Using Level-Set Methods.
    Wu Q; Lane CR; Wang L; Vanderhoof MK; Christensen JR; Liu H
    J Am Water Resour Assoc; 2019 Apr; 55(2):354-368. PubMed ID: 33776405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery.
    Wu Q; Lane CR
    Hydrol Earth Syst Sci; 2017; 21(7):3579-3595. PubMed ID: 30147279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic hydro-conditioning to resolve surface depression storage and ponding in a fully distributed hydrologic model.
    Jiang AL; Hsu K; Sanders BF; Sorooshian S
    Adv Water Resour; 2023 Jun; 176():. PubMed ID: 37601703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of digital elevation model data source on HSPF-based watershed-scale flow and water quality simulations.
    Roostaee M; Deng Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):31935-31953. PubMed ID: 36456672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does the choice of DEMs affect catchment hydrological modeling?
    Moges DM; Virro H; Kmoch A; Cibin R; Rohith AN; Martínez-Salvador A; Conesa-García C; Uuemaa E
    Sci Total Environ; 2023 Sep; 892():164627. PubMed ID: 37285999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for extracting drainage networks with heuristic information from digital elevation models.
    Hou K; Yang W; Sun J; Sun T
    Water Sci Technol; 2011; 64(11):2316-24. PubMed ID: 22156138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HSPF-based watershed-scale water quality modeling and uncertainty analysis.
    Roostaee M; Deng Z
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8971-8991. PubMed ID: 30719665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New DEM Generalization Method Based on Watershed and Tree Structure.
    Chen Y; Ma T; Chen X; Chen Z; Yang C; Lin C; Shan L
    PLoS One; 2016; 11(8):e0159798. PubMed ID: 27517296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multi-Sensor Comparative Analysis on the Suitability of Generated DEM from Sentinel-1 SAR Interferometry Using Statistical and Hydrological Models.
    Mohammadi A; Karimzadeh S; Jalal SJ; Kamran KV; Shahabi H; Homayouni S; Al-Ansari N
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of DEM mesh size on AnnAGNPS simulation and slope correction.
    Wang X; Lin Q
    Environ Monit Assess; 2011 Aug; 179(1-4):267-77. PubMed ID: 20953988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SWAT Modeling of Non-Point Source Pollution in Depression-Dominated Basins under Varying Hydroclimatic Conditions.
    Tahmasebi Nasab M; Grimm K; Bazrkar MH; Zeng L; Shabani A; Zhang X; Chu X
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30413033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of DEM Super-Resolution Methods Based on Interpolation and Neural Networks.
    Zhang Y; Yu W
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions.
    Rajib A; Golden HE; Lane CR; Wu Q
    Water Resour Res; 2020 Jul; 56(7):e2019WR026561. PubMed ID: 33364639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine.
    Wua Q; Lane CR; Li X; Zhao K; Zhou Y; Clinton N; DeVries B; Golden HE; Lang MW
    Remote Sens Environ; 2019 Jul; 228():1-13. PubMed ID: 33776151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of identical digital elevation model resolution and sources on morphometric parameters of Tena watershed, Ethiopia.
    Tesema TA
    Heliyon; 2021 Nov; 7(11):e08345. PubMed ID: 34825078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Topographic Data Accuracy on Watershed Management.
    Fathy I; Abd-Elhamid H; Zelenakova M; Kaposztasova D
    Int J Environ Res Public Health; 2019 Nov; 16(21):. PubMed ID: 31683789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.
    Eisank C; Smith M; Hillier J
    Geomorphology (Amst); 2014 Jun; 214(100):452-464. PubMed ID: 24895471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Paths of soil erosion controlled by typical soil and water conservation practices based on the SIMWE model: A case study of the Tongshuang watershed.].
    Chen ZM; Wang B
    Ying Yong Sheng Tai Xue Bao; 2022 Mar; 33(3):703-710. PubMed ID: 35524522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling hydrological factors from DEM using GIS.
    Chowdhury MS
    MethodsX; 2023; 10():102062. PubMed ID: 36845367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions Using ICESat Data: A Case Study over Hunan Province, China.
    Liu Z; Zhu J; Fu H; Zhou C; Zuo T
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.