These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 33776495)
1. The Random Forest Model Has the Best Accuracy Among the Four Pressure Ulcer Prediction Models Using Machine Learning Algorithms. Song J; Gao Y; Yin P; Li Y; Li Y; Zhang J; Su Q; Fu X; Pi H Risk Manag Healthc Policy; 2021; 14():1175-1187. PubMed ID: 33776495 [TBL] [Abstract][Full Text] [Related]
2. Prediction of 5-day biochemical oxygen demand in the Buriganga River of Bangladesh using novel hybrid machine learning algorithms. Nafsin N; Li J Water Environ Res; 2022 May; 94(5):e10718. PubMed ID: 35502725 [TBL] [Abstract][Full Text] [Related]
3. The predictive effect of different machine learning algorithms for pressure injuries in hospitalized patients: A network meta-analyses. Qu C; Luo W; Zeng Z; Lin X; Gong X; Wang X; Zhang Y; Li Y Heliyon; 2022 Nov; 8(11):e11361. PubMed ID: 36387440 [TBL] [Abstract][Full Text] [Related]
4. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Liu L; Jiao Y; Li X; Ouyang Y; Shi D Comput Methods Programs Biomed; 2020 Nov; 196():105624. PubMed ID: 32623348 [TBL] [Abstract][Full Text] [Related]
5. Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches. Tarekegn A; Ricceri F; Costa G; Ferracin E; Giacobini M JMIR Med Inform; 2020 Jun; 8(6):e16678. PubMed ID: 32442149 [TBL] [Abstract][Full Text] [Related]
6. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976 [TBL] [Abstract][Full Text] [Related]
7. To Establish an Early Prediction Model for Acute Respiratory Distress Syndrome in Severe Acute Pancreatitis Using Machine Learning Algorithm. Zhang W; Chang Y; Ding Y; Zhu Y; Zhao Y; Shi R J Clin Med; 2023 Feb; 12(5):. PubMed ID: 36902504 [TBL] [Abstract][Full Text] [Related]
8. Comparing different algorithms for the course of Alzheimer's disease using machine learning. Tang X; Liu J Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897 [TBL] [Abstract][Full Text] [Related]
9. Development and head-to-head comparison of machine-learning models to identify patients requiring prostate biopsy. Yu S; Tao J; Dong B; Fan Y; Du H; Deng H; Cui J; Hong G; Zhang X BMC Urol; 2021 May; 21(1):80. PubMed ID: 33993876 [TBL] [Abstract][Full Text] [Related]
10. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years. Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448 [No Abstract] [Full Text] [Related]
12. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091 [TBL] [Abstract][Full Text] [Related]
13. [Predicting prolonged length of intensive care unit stay Wu JY; Lin Y; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699 [TBL] [Abstract][Full Text] [Related]
14. Identifying Patients at Risk of Acute Kidney Injury among Patients Receiving Immune Checkpoint Inhibitors: A Machine Learning Approach. Yu X; Wu R; Ji Y; Huang M; Feng Z Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553164 [TBL] [Abstract][Full Text] [Related]
15. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system. Das J; Kumar S; Mishra DC; Chaturvedi KK; Paul RK; Kairi A Front Genet; 2022; 13():1085332. PubMed ID: 36699447 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
17. Identifying the Risk Factors Associated with Nursing Home Residents' Pressure Ulcers Using Machine Learning Methods. Lee SK; Shin JH; Ahn J; Lee JY; Jang DE Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33805798 [TBL] [Abstract][Full Text] [Related]
18. Prediction of mustard yield using different machine learning techniques: a case study of Rajasthan, India. Vashisth A; Goyal A Int J Biometeorol; 2023 Mar; 67(3):539-551. PubMed ID: 36717403 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion. Duan C; Liu F; Gao S; Zhao J; Niu L; Li N; Liu S; Wang G; Zhou X; Ren Y; Xu W; Liu X Clin Neuroradiol; 2022 Mar; 32(1):215-223. PubMed ID: 34156513 [TBL] [Abstract][Full Text] [Related]
20. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Lin K; Hu Y; Kong G Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]