BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 33776638)

  • 1. How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity.
    Olszewska AM; Gaca M; Herman AM; Jednoróg K; Marchewka A
    Front Neurosci; 2021; 15():630829. PubMed ID: 33776638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroanatomical Disposition, Natural Development, and Training-Induced Plasticity of the Human Auditory System from Childhood to Adulthood: A 12-Year Study in Musicians and Nonmusicians.
    Schneider P; Engelmann D; Groß C; Bernhofs V; Hofmann E; Christiner M; Benner J; Bücher S; Ludwig A; Serrallach BL; Zeidler BM; Turker S; Parncutt R; Seither-Preisler A
    J Neurosci; 2023 Sep; 43(37):6430-6446. PubMed ID: 37604688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding functional brain reorganization for naturalistic piano playing in novice pianists.
    Olszewska AM; Gaca M; Droździel D; Widlarz A; Herman AM; Marchewka A
    J Neurosci Res; 2024 Feb; 102(2):e25312. PubMed ID: 38400578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural neuroplasticity in expert pianists depends on the age of musical training onset.
    Vaquero L; Hartmann K; Ripollés P; Rojo N; Sierpowska J; François C; Càmara E; van Vugt FT; Mohammadi B; Samii A; Münte TF; Rodríguez-Fornells A; Altenmüller E
    Neuroimage; 2016 Feb; 126():106-19. PubMed ID: 26584868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chinese and Western Musical Training Impacts the Circuit in Auditory and Reward Systems.
    Guo S; Peng K; Ding R; Zhou J; Liu Y; He Y; Liu Y; Li K; Liu P; Luo C; Lu J; Yao D
    Front Neurosci; 2021; 15():663015. PubMed ID: 34366771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians.
    Vaquero L; Ramos-Escobar N; François C; Penhune V; Rodríguez-Fornells A
    Neuroimage; 2018 Nov; 181():252-262. PubMed ID: 29929006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inherent auditory skills rather than formal music training shape the neural encoding of speech.
    Mankel K; Bidelman GM
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):13129-13134. PubMed ID: 30509989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network retuning and neural predictors of learning success associated with cello training.
    Wollman I; Penhune V; Segado M; Carpentier T; Zatorre RJ
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6056-E6064. PubMed ID: 29891670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musical training shapes structural brain development.
    Hyde KL; Lerch J; Norton A; Forgeard M; Winner E; Evans AC; Schlaug G
    J Neurosci; 2009 Mar; 29(10):3019-25. PubMed ID: 19279238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning.
    Watanabe D; Savion-Lemieux T; Penhune VB
    Exp Brain Res; 2007 Jan; 176(2):332-40. PubMed ID: 16896980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians.
    Angulo-Perkins A; Aubé W; Peretz I; Barrios FA; Armony JL; Concha L
    Cortex; 2014 Oct; 59():126-37. PubMed ID: 25173956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroplasticity of semantic representations for musical instruments in professional musicians.
    Hoenig K; Müller C; Herrnberger B; Sim EJ; Spitzer M; Ehret G; Kiefer M
    Neuroimage; 2011 Jun; 56(3):1714-25. PubMed ID: 21356317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience Playing a Musical Instrument and Overnight Sleep Enhance Performance on a Sequential Typing Task.
    Tucker MA; Nguyen N; Stickgold R
    PLoS One; 2016; 11(7):e0159608. PubMed ID: 27472398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Music-performance regulates microRNAs in professional musicians.
    Nair PS; Kuusi T; Ahvenainen M; Philips AK; Järvelä I
    PeerJ; 2019; 7():e6660. PubMed ID: 30956902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "silent" imprint of musical training.
    Klein C; Liem F; Hänggi J; Elmer S; Jäncke L
    Hum Brain Mapp; 2016 Feb; 37(2):536-46. PubMed ID: 26538421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reorganization of the thalamocortical network in musicians.
    Tanaka S; Kirino E
    Brain Res; 2017 Jun; 1664():48-54. PubMed ID: 28377159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of Functional Connectivity in Auditory-Motor Networks in Musicians Compared with Nonmusicians.
    Palomar-García MÁ; Zatorre RJ; Ventura-Campos N; Bueichekú E; Ávila C
    Cereb Cortex; 2017 May; 27(5):2768-2778. PubMed ID: 27166170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive periods in human development: evidence from musical training.
    Penhune VB
    Cortex; 2011 Oct; 47(9):1126-37. PubMed ID: 21665201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity patterns during music listening: Evidence for action-based processing in musicians.
    Alluri V; Toiviainen P; Burunat I; Kliuchko M; Vuust P; Brattico E
    Hum Brain Mapp; 2017 Jun; 38(6):2955-2970. PubMed ID: 28349620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.