BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33776673)

  • 1. Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG.
    Pei Y; Luo Z; Yan Y; Yan H; Jiang J; Li W; Xie L; Yin E
    Front Hum Neurosci; 2021; 15():645952. PubMed ID: 33776673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface.
    Raza H; Rathee D; Zhou SM; Cecotti H; Prasad G
    Neurocomputing (Amst); 2019 May; 343():154-166. PubMed ID: 32226230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Adversarial Networks-Based Data Augmentation for Brain-Computer Interface.
    Fahimi F; Dosen S; Ang KK; Mrachacz-Kersting N; Guan C
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4039-4051. PubMed ID: 32841127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning.
    Feng J; Li Y; Jiang C; Liu Y; Li M; Hu Q
    Front Hum Neurosci; 2022; 16():1068165. PubMed ID: 36618992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MDTL: A Novel and Model-Agnostic Transfer Learning Strategy for Cross-Subject Motor Imagery BCI.
    Li A; Wang Z; Zhao X; Xu T; Zhou T; Hu H
    IEEE Trans Neural Syst Rehabil Eng; 2023 Mar; PP():. PubMed ID: 37030758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation-based channel selection and regularized feature optimization for MI-based BCI.
    Jin J; Miao Y; Daly I; Zuo C; Hu D; Cichocki A
    Neural Netw; 2019 Oct; 118():262-270. PubMed ID: 31326660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CutCat: An augmentation method for EEG classification.
    Al-Saegh A; Dawwd SA; Abdul-Jabbar JM
    Neural Netw; 2021 Sep; 141():433-443. PubMed ID: 34147756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New
    Wu F; Gong A; Li H; Zhao L; Zhang W; Fu Y
    Front Hum Neurosci; 2021; 15():595723. PubMed ID: 33762911
    [No Abstract]   [Full Text] [Related]  

  • 11. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regularized common spatial patterns with subject-to-subject transfer of EEG signals.
    Cheng M; Lu Z; Wang H
    Cogn Neurodyn; 2017 Apr; 11(2):173-181. PubMed ID: 28348648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Generalization Based on
    Zhao Y; Han J; Chen Y; Sun H; Chen J; Ke A; Han Y; Zhang P; Zhang Y; Zhou J; Wang C
    Front Neurosci; 2018; 12():272. PubMed ID: 29867307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive sLORETA Study on the Contribution of Cortical Somatomotor Regions to Motor Imagery.
    Yazici M; Ulutas M; Okuyan M
    Brain Sci; 2019 Dec; 9(12):. PubMed ID: 31847114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Data Augmentation Method for Motor Imagery EEG Signals Based on DCGAN-GP Network.
    Du X; Ding X; Xi M; Lv Y; Qiu S; Liu Q
    Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEGNet-based multi-source domain filter for BCI transfer learning.
    Li M; Li J; Song Z; Deng H; Xu J; Xu G; Liao W
    Med Biol Eng Comput; 2024 Mar; 62(3):675-686. PubMed ID: 37982955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.