These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33777076)

  • 1. Cost-Benefit Analysis of the Upland-Rice Root Architecture in Relation to Phosphate: 3D Simulations Highlight the Importance of S-Type Lateral Roots for Reducing the Pay-Off Time.
    Gonzalez D; Postma J; Wissuwa M
    Front Plant Sci; 2021; 12():641835. PubMed ID: 33777076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional-structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils.
    De Bauw P; Mai TH; Schnepf A; Merckx R; Smolders E; Vanderborght J
    Ann Bot; 2020 Sep; 126(4):789-806. PubMed ID: 32597468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions.
    Nestler J; Keyes SD; Wissuwa M
    J Exp Bot; 2016 Jun; 67(12):3699-708. PubMed ID: 26976815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of root hairs and lateral roots in silicon uptake by rice.
    Ma JF; Goto S; Tamai K; Ichii M
    Plant Physiol; 2001 Dec; 127(4):1773-80. PubMed ID: 11743120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice increases phosphorus uptake in strongly sorbing soils by intra-root facilitation.
    Kuppe CW; Kirk GJD; Wissuwa M; Postma JA
    Plant Cell Environ; 2022 Mar; 45(3):884-899. PubMed ID: 35137976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice.
    Yu E; Yamaji N; Mao C; Wang H; Ma JF
    J Exp Bot; 2021 Oct; 72(20):7219-7228. PubMed ID: 34252176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotypic differences in the presence of hairs on roots and gynophores of peanuts (Arachis hypogaea L.) and their significance for phosphorus uptake.
    Wissuwa M; Ae N
    J Exp Bot; 2001 Aug; 52(361):1703-10. PubMed ID: 11479336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Variability in Phosphorus Responses of Rice Root Phenotypes.
    Vejchasarn P; Lynch JP; Brown KM
    Rice (N Y); 2016 Dec; 9(1):29. PubMed ID: 27294384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated root phenotypes for improved rice performance under low nitrogen availability.
    Ajmera I; Henry A; Radanielson AM; Klein SP; Ianevski A; Bennett MJ; Band LR; Lynch JP
    Plant Cell Environ; 2022 Mar; 45(3):805-822. PubMed ID: 35141925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence.
    Armstrong J; Armstrong W
    Ann Bot; 2005 Sep; 96(4):625-38. PubMed ID: 16093271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of
    Sun H; Guo X; Xu F; Wu D; Zhang X; Lou M; Luo F; Xu G; Zhang Y
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.
    Gu D; Zhen F; Hannaway DB; Zhu Y; Liu L; Cao W; Tang L
    PLoS One; 2017; 12(1):e0169968. PubMed ID: 28103264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Mechanisms of Root Development in Rice.
    Meng F; Xiang D; Zhu J; Li Y; Mao C
    Rice (N Y); 2019 Jan; 12(1):1. PubMed ID: 30631971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seminal, adventitious and lateral root growth and physiological responses in rice to upland conditions.
    Yang L; Zheng BS; Mao CZ; Yi KK; Wu YR; Wu P; Tao QN
    J Zhejiang Univ Sci; 2003; 4(4):469-73. PubMed ID: 12861625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oryza sativa Lysine-Histidine-type Transporter 1 functions in root uptake and root-to-shoot allocation of amino acids in rice.
    Guo N; Hu J; Yan M; Qu H; Luo L; Tegeder M; Xu G
    Plant J; 2020 Jul; 103(1):395-411. PubMed ID: 32159895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System.
    Negi M; Sanagala R; Rai V; Jain A
    Front Plant Sci; 2016; 7():550. PubMed ID: 27200025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of genes controlling root traits is required for the developmental acquisition of deep and thick root traits and improving root architecture in response to low water or nitrogen content in rice (Oryza sativa L.) cultivars.
    Nada RM; Abo-Hegazy SE; Budran EG; Abogadallah GM
    Plant Physiol Biochem; 2019 Aug; 141():122-132. PubMed ID: 31151078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between two auxin-resistant mutants and their effects on lateral root formation in rice (Oryza sativa L.).
    Chhun T; Taketa S; Tsurumi S; Ichii M
    J Exp Bot; 2003 Dec; 54(393):2701-8. PubMed ID: 14623941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. qRT9, a quantitative trait locus controlling root thickness and root length in upland rice.
    Li J; Han Y; Liu L; Chen Y; Du Y; Zhang J; Sun H; Zhao Q
    J Exp Bot; 2015 May; 66(9):2723-32. PubMed ID: 25769309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.