These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33777077)
21. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Sato T; Hachiya S; Inamura N; Ezawa T; Cheng W; Tawaraya K Mycorrhiza; 2019 Nov; 29(6):599-605. PubMed ID: 31745622 [TBL] [Abstract][Full Text] [Related]
22. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Bukovská P; Bonkowski M; Konvalinková T; Beskid O; Hujslová M; Püschel D; Řezáčová V; Gutiérrez-Núñez MS; Gryndler M; Jansa J Mycorrhiza; 2018 Aug; 28(5-6):465. PubMed ID: 29951863 [TBL] [Abstract][Full Text] [Related]
23. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species. Calonne-Salmon M; Plouznikoff K; Declerck S Mycorrhiza; 2018 Nov; 28(8):761-771. PubMed ID: 30121903 [TBL] [Abstract][Full Text] [Related]
24. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in Zhao Y; Cartabia A; Garcés-Ruiz M; Herent MF; Quetin-Leclercq J; Ortiz S; Declerck S; Lalaymia I Front Microbiol; 2023; 14():1216029. PubMed ID: 37637105 [TBL] [Abstract][Full Text] [Related]
25. Relationship between genetic variability in Rhizophagus irregularis and tolerance to saline conditions. Campagnac E; Khasa DP Mycorrhiza; 2014 Feb; 24(2):121-9. PubMed ID: 23942749 [TBL] [Abstract][Full Text] [Related]
26. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. Toljander JF; Artursson V; Paul LR; Jansson JK; Finlay RD FEMS Microbiol Lett; 2006 Jan; 254(1):34-40. PubMed ID: 16451176 [TBL] [Abstract][Full Text] [Related]
27. Axenic growth of the arbuscular mycorrhizal fungus Rhizophagus irregularis and growth stimulation by coculture with plant growth-promoting rhizobacteria. Abdellatif L; Lokuruge P; Hamel C Mycorrhiza; 2019 Nov; 29(6):591-598. PubMed ID: 31760478 [TBL] [Abstract][Full Text] [Related]
28. The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. Piotrowski JS; Denich T; Klironomos JN; Graham JM; Rillig MC New Phytol; 2004 Nov; 164(2):365-373. PubMed ID: 33873560 [TBL] [Abstract][Full Text] [Related]
29. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mickan BS; Abbott LK; Stefanova K; Solaiman ZM Mycorrhiza; 2016 Aug; 26(6):565-74. PubMed ID: 27067713 [TBL] [Abstract][Full Text] [Related]
30. Increasing phosphorus concentration in the extraradical hyphae of Rhizophagus irregularis DAOM 197198 leads to a concomitant increase in metal minerals. Zhang L; Jiang C; Zhou J; Declerck S; Tian C; Feng G Mycorrhiza; 2016 Nov; 26(8):909-918. PubMed ID: 27468824 [TBL] [Abstract][Full Text] [Related]
31. The extraradical proteins of Rhizophagus irregularis: A shotgun proteomics approach. Murphy CL; Youssef NH; Hartson S; Elshahed MS Fungal Biol; 2020 Feb; 124(2):91-101. PubMed ID: 32008757 [TBL] [Abstract][Full Text] [Related]
32. Polyaromatic hydrocarbons impair phosphorus transport by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Calonne M; Fontaine J; Tisserant B; Dupré de Boulois H; Grandmougin-Ferjani A; Declerck S; Lounès-Hadj Sahraoui A Chemosphere; 2014 Jun; 104():97-104. PubMed ID: 24287265 [TBL] [Abstract][Full Text] [Related]
33. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Veiga RS; Faccio A; Genre A; Pieterse CM; Bonfante P; van der Heijden MG Plant Cell Environ; 2013 Nov; 36(11):1926-37. PubMed ID: 23527688 [TBL] [Abstract][Full Text] [Related]
34. The arbuscular mycorrhizal Rhizophagus irregularis activates storage lipid biosynthesis to cope with the benzo[a]pyrene oxidative stress. Calonne M; Fontaine J; Debiane D; Laruelle F; Grandmougin-Ferjani A; Lounès-Hadj Sahraoui A Phytochemistry; 2014 Jan; 97():30-7. PubMed ID: 24246754 [TBL] [Abstract][Full Text] [Related]
35. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Tamayo E; Gómez-Gallego T; Azcón-Aguilar C; Ferrol N Front Plant Sci; 2014; 5():547. PubMed ID: 25352857 [TBL] [Abstract][Full Text] [Related]
37. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. Wang G; Jin Z; George TS; Feng G; Zhang L New Phytol; 2023 Jun; 238(6):2578-2593. PubMed ID: 36694293 [TBL] [Abstract][Full Text] [Related]
38. Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Koffi MC; Vos C; Draye X; Declerck S Mycorrhiza; 2013 May; 23(4):279-88. PubMed ID: 23111398 [TBL] [Abstract][Full Text] [Related]
39. Arbuscular Mycorrhizal Fungi Increase Pb Uptake of Colonized and Non-Colonized Zhang H; Ren W; Zheng Y; Li Y; Zhu M; Tang M Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34199397 [TBL] [Abstract][Full Text] [Related]
40. Characterization of the NRAMP Gene Family in the Arbuscular Mycorrhizal Fungus López-Lorca VM; Molina-Luzón MJ; Ferrol N J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]