These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33777693)

  • 1. Photoacoustic power azimuth spectrum for microvascular evaluation.
    Zhang M; Chen Y; Xie W; Wu S; Liao J; Cheng Q
    Photoacoustics; 2021 Jun; 22():100260. PubMed ID: 33777693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelet transform-based photoacoustic time-frequency spectral analysis for bone assessment.
    Xie W; Feng T; Zhang M; Li J; Ta D; Cheng L; Cheng Q
    Photoacoustics; 2021 Jun; 22():100259. PubMed ID: 33777692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic simulations of microvascular bleeding: spectral analysis and its application for monitoring vascular-targeted treatments.
    Fadhel MN; Hysi E; Zalev J; Kolios MC
    J Biomed Opt; 2019 Nov; 24(11):1-8. PubMed ID: 31707772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of bone microstructure using photoacoustic spectrum analysis.
    Feng T; Perosky JE; Kozloff KM; Xu G; Cheng Q; Du S; Yuan J; Deng CX; Wang X
    Opt Express; 2015 Sep; 23(19):25217-24. PubMed ID: 26406719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The feasibility study of the transmission mode photoacoustic measurement of human calcaneus bone
    Feng T; Zhu Y; Morris R; Kozloff KM; Wang X
    Photoacoustics; 2021 Sep; 23():100273. PubMed ID: 34745881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of Quantitative Tissue Characterization Using Novel Parameters Extracted From Photoacoustic Power Spectrum Considering Multiple Absorbers.
    Rathi N; Sinha S; Chinni B; Dogra V; Rao N
    Ultrason Imaging; 2022 Jan; 44(1):13-24. PubMed ID: 34711106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental design and numerical investigation of a photoacoustic sensor for a low-power, continuous-wave, laser-based frequency-domain photoacoustic microscopy.
    Sathiyamoorthy K; Kolios MC
    J Biomed Opt; 2019 Oct; 24(12):1-12. PubMed ID: 31674163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque.
    Daeichin V; Wu M; De Jong N; van der Steen AF; van Soest G
    Ultrasound Med Biol; 2016 Aug; 42(8):2017-25. PubMed ID: 27181689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quick identification of prostate cancer by wavelet transform-based photoacoustic power spectrum analysis.
    Wu S; Liu Y; Chen Y; Xu C; Chen P; Zhang M; Ye W; Wu D; Huang S; Cheng Q
    Photoacoustics; 2022 Mar; 25():100327. PubMed ID: 34987958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the aggressiveness of prostate cancer using an all-optical needle photoacoustic sensing probe: feasibility study.
    Ni L; Siddiqui J; Udager AM; Jo J; Wei JT; Davenport MS; Carson PL; Fowlkes JB; Wang X; Xu G
    Biomed Opt Express; 2021 Aug; 12(8):4873-4888. PubMed ID: 34513230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effect of near-threshold stimulus intensities on sound localization performance in azimuth and elevation in normal human subjects.
    Su TI; Recanzone GH
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):246-56. PubMed ID: 11669397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical frequency comb photoacoustic spectroscopy.
    Sadiek I; Mikkonen T; Vainio M; Toivonen J; Foltynowicz A
    Phys Chem Chem Phys; 2018 Nov; 20(44):27849-27855. PubMed ID: 30398249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of photoacoustic signals from mixtures of melanoma and red blood cells.
    Saha RK
    J Acoust Soc Am; 2014 Oct; 136(4):2039-49. PubMed ID: 25324102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoacoustic imaging method based on arc-direction compressed sensing and multi-angle observation.
    Sun M; Feng N; Shen Y; Shen X; Ma L; Li J; Wu Z
    Opt Express; 2011 Aug; 19(16):14801-6. PubMed ID: 21934841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taking advantage of acoustic inhomogeneities in photoacoustic measurements.
    Da Silva A; Handschin C; Metwally K; Garci H; Riedinger C; Mensah S; Akhouayri H
    J Biomed Opt; 2017 Apr; 22(4):41012. PubMed ID: 28116445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Plane Anisotropic Photoconduction in Nonpolar Epitaxial a-Plane GaN.
    Pant R; Shetty A; Chandan G; Roul B; Nanda KK; Krupanidhi SB
    ACS Appl Mater Interfaces; 2018 May; 10(19):16918-16923. PubMed ID: 29707943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice.
    Jin Y; Zubov Y; Yang T; Choi TY; Krokhin A; Neogi A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of polarizer azimuth in improving signal-to-noise ratio in Kerr microscopy.
    Wang X; Lian J; Xu XJ; Li X; Li P; Li MM; Wang Y; Liu YX
    Appl Opt; 2016 Mar; 55(7):1725-30. PubMed ID: 26974636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of photoacoustics to detect red blood cell aggregation.
    Hysi E; Saha RK; Kolios MC
    Biomed Opt Express; 2012 Sep; 3(9):2326-38. PubMed ID: 23024924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influence of CO2 molecular relaxation dynamics on photoacoustic signal in near infrared (NIR) range].
    Li JS; Liu K; Zhang WJ; Chen WD; Gao XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):1953-7. PubMed ID: 19093538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.