BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 33777909)

  • 1. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis.
    Sigdel I; Gupta N; Faizee F; Khare VM; Tiwari AK; Tang Y
    Front Bioeng Biotechnol; 2021; 9():633671. PubMed ID: 33777909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Microfluidic Systems for Breast Cancer Research.
    Frankman ZD; Jiang L; Schroeder JA; Zohar Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis.
    Peela N; Truong D; Saini H; Chu H; Mashaghi S; Ham SL; Singh S; Tavana H; Mosadegh B; Nikkhah M
    Biomaterials; 2017 Jul; 133():176-207. PubMed ID: 28437628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Jan; ():e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Tissue-Based Liver-Kidney-on-a-Chip Can Mimic Liver Tropism of Extracellular Vesicles Derived from Breast Cancer Cells.
    Tian H; Pang J; Qin K; Yuan W; Kong J; Ma H; He J; Yang X; Luo Y; Lu Y; Lin B; Liu T
    Biotechnol J; 2020 Feb; 15(2):e1900107. PubMed ID: 31473998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic vascular models of tumor cell extravasation.
    Kim S; Wan Z; Jeon JS; Kamm RD
    Front Oncol; 2022; 12():1052192. PubMed ID: 36439519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer-on-a-Chip: Models for Studying Metastasis.
    Zhang X; Karim M; Hasan MM; Hooper J; Wahab R; Roy S; Al-Hilal TA
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Biosensor-Based Devices for Rapid Diagnosis and Effective Anti-cancer Therapeutic Monitoring for Breast Cancer Metastasis.
    Sukanya VS; Rath SN
    Adv Exp Med Biol; 2022; 1379():319-339. PubMed ID: 35760998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment.
    Portillo-Lara R; Annabi N
    Lab Chip; 2016 Oct; 16(21):4063-4081. PubMed ID: 27605305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis.
    Mei X; Middleton K; Shim D; Wan Q; Xu L; Ma YV; Devadas D; Walji N; Wang L; Young EWK; You L
    Integr Biol (Camb); 2019 Apr; 11(4):119-129. PubMed ID: 31125041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies.
    Hakim M; Kermanshah L; Abouali H; Hashemi HM; Yari A; Khorasheh F; Alemzadeh I; Vossoughi M
    Biophys Rev; 2022 Apr; 14(2):517-543. PubMed ID: 35528034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Tumor-Vascular Model to Study Breast Cancer Cell Invasion and Intravasation.
    Nagaraju S; Truong D; Mouneimne G; Nikkhah M
    Adv Healthc Mater; 2018 May; 7(9):e1701257. PubMed ID: 29334196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ-on-a-chip platforms as novel advancements for studying heterogeneity, metastasis, and drug efficacy in breast cancer.
    Kalot R; Mhanna R; Talhouk R
    Pharmacol Ther; 2022 Sep; 237():108156. PubMed ID: 35150784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis.
    Narkhede AA; Shevde LA; Rao SS
    Int J Cancer; 2017 Sep; 141(6):1091-1109. PubMed ID: 28439901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model.
    Liu W; Song J; Du X; Zhou Y; Li Y; Li R; Lyu L; He Y; Hao J; Ben J; Wang W; Shi H; Wang Q
    Acta Biomater; 2019 Jun; 91():195-208. PubMed ID: 31034948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion.
    Toh YC; Raja A; Yu H; van Noort D
    Bioengineering (Basel); 2018 Apr; 5(2):. PubMed ID: 29642502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation.
    Lee H; Park W; Ryu H; Jeon NL
    Biomicrofluidics; 2014 Sep; 8(5):054102. PubMed ID: 25332739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.