BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 33777909)

  • 21. Engineered Models of Metastasis with Application to Study Cancer Biomechanics.
    Chen MB; Kamm RD; Moeendarbary E
    Adv Exp Med Biol; 2018; 1092():189-207. PubMed ID: 30368754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PO-12 - The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model.
    Gilardi M; Bersini S; Calleja AB; Kamm RD; Vanoni M; Moretti M
    Thromb Res; 2016 Apr; 140 Suppl 1():S180-1. PubMed ID: 27161700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis.
    Xu X; Jiang Z; Wang J; Ren Y; Wu A
    Electrophoresis; 2020 Jun; 41(10-11):933-951. PubMed ID: 32144938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in lab-on-a-chip systems for breast cancer metastasis research.
    Firatligil-Yildirir B; Yalcin-Ozuysal O; Nonappa
    Nanoscale Adv; 2023 May; 5(9):2375-2393. PubMed ID: 37143816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative Analysis of Human Cancer Cell Extravasation Using Intravital Imaging.
    Willetts L; Bond D; Stoletov K; Lewis JD
    Methods Mol Biol; 2016; 1458():27-37. PubMed ID: 27581012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a cancer metastasis-on-chip assay for high throughput drug screening.
    Ozer LY; Fayed HS; Ericsson J; Al Haj Zen A
    Front Oncol; 2023; 13():1269376. PubMed ID: 38239643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of Metastasis Study Models toward Metastasis-On-A-Chip: The Ultimate Model?
    Ruiz-Espigares J; Nieto D; Moroni L; Jiménez G; Marchal JA
    Small; 2021 Apr; 17(14):e2006009. PubMed ID: 33705602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging tumor spheroids technologies for 3D in vitro cancer modeling.
    Rodrigues T; Kundu B; Silva-Correia J; Kundu SC; Oliveira JM; Reis RL; Correlo VM
    Pharmacol Ther; 2018 Apr; 184():201-211. PubMed ID: 29097309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidics for studying metastatic patterns of lung cancer.
    Ruzycka M; Cimpan MR; Rios-Mondragon I; Grudzinski IP
    J Nanobiotechnology; 2019 May; 17(1):71. PubMed ID: 31133019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breast tumor-on-chip models: From disease modeling to personalized drug screening.
    Subia B; Dahiya UR; Mishra S; Ayache J; Casquillas GV; Caballero D; Reis RL; Kundu SC
    J Control Release; 2021 Mar; 331():103-120. PubMed ID: 33417986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidating cancer-vascular paracrine signaling using a human organotypic breast cancer cell extravasation model.
    Humayun M; Ayuso JM; Brenneke RA; Virumbrales-Muñoz M; Lugo-Cintrón K; Kerr S; Ponik SM; Beebe DJ
    Biomaterials; 2021 Mar; 270():120640. PubMed ID: 33592387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets.
    Wood SL; Pernemalm M; Crosbie PA; Whetton AD
    Cancer Treat Rev; 2014 May; 40(4):558-66. PubMed ID: 24176790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A SERS-assisted 3D organotypic microfluidic chip for in-situ visualization and monitoring breast cancer extravasation process.
    Qian Z; Wang Z; Zhu K; Yang K; Wu L; Zong S; Wang Z
    Talanta; 2024 Apr; 270():125633. PubMed ID: 38199123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding organotropism in cancer metastasis using microphysiological systems.
    Ko J; Song J; Lee Y; Choi N; Kim HN
    Lab Chip; 2024 Mar; 24(6):1542-1556. PubMed ID: 38192269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development.
    Wang R; Zhang C; Li D; Yao Y
    Front Bioeng Biotechnol; 2022; 10():1057913. PubMed ID: 36483772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organotropism: new insights into molecular mechanisms of breast cancer metastasis.
    Chen W; Hoffmann AD; Liu H; Liu X
    NPJ Precis Oncol; 2018; 2(1):4. PubMed ID: 29872722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D functional and perfusable microvascular networks for organotypic microfluidic models.
    Bersini S; Moretti M
    J Mater Sci Mater Med; 2015 May; 26(5):180. PubMed ID: 25893395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.