These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33778004)

  • 1. Prediction of Function Determining and Buried Residues Through Analysis of Saturation Mutagenesis Datasets.
    Bhasin M; Varadarajan R
    Front Mol Biosci; 2021; 8():635425. PubMed ID: 33778004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.
    Tripathi A; Gupta K; Khare S; Jain PC; Patel S; Kumar P; Pulianmackal AJ; Aghera N; Varadarajan R
    Mol Biol Evol; 2016 Nov; 33(11):2960-2975. PubMed ID: 27563054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional determinants inferred from deep mutational scans.
    Bajaj P; Manjunath K; Varadarajan R
    Protein Sci; 2022 Jul; 31(7):e4357. PubMed ID: 35762712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Residue-specific Contributions to Binding and Thermal Stability Using Yeast Surface Display.
    Ahmed S; Bhasin M; Manjunath K; Varadarajan R
    Front Mol Biosci; 2021; 8():800819. PubMed ID: 35127820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein model discrimination attempts using mutational sensitivity, predicted secondary structure, and model quality information.
    Khare S; Bhasin M; Sahoo A; Varadarajan R
    Proteins; 2019 Apr; 87(4):326-336. PubMed ID: 30615225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in
    Vedithi SC; Rodrigues CHM; Portelli S; Skwark MJ; Das M; Ascher DB; Blundell TL; Malhotra S
    Comput Struct Biotechnol J; 2020; 18():271-286. PubMed ID: 32042379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic mutations in buried polar residues enhance HIV-1 gp41 N-terminal heptad repeat-C-terminal heptad repeat interactions and C-peptides' anti-HIV activity.
    Zheng B; Wang K; Lu L; Yu F; Cheng M; Jiang S; Liu K; Cai L
    AIDS; 2014 Jun; 28(9):1251-60. PubMed ID: 24625369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis.
    Mitchell SM; Lee E; Garcia ML; Stephan MM
    J Biol Chem; 2004 Jun; 279(23):24089-99. PubMed ID: 15140876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Structure of the HIV-1 Envelope Trimer Using Aspartate Scanning Mutagenesis.
    Das R; Datta R; Varadarajan R
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32817217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Protein Engineering Guided by Deep Mutational Scanning.
    Shin H; Cho BK
    Int J Mol Sci; 2015 Sep; 16(9):23094-110. PubMed ID: 26404267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of interaction interface residues in low-resolution structures of protein assemblies solely from the positions of C(alpha) atoms.
    Gadkari RA; Varughese D; Srinivasan N
    PLoS One; 2009; 4(2):e4476. PubMed ID: 19214247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein model discrimination using mutational sensitivity derived from deep sequencing.
    Adkar BV; Tripathi A; Sahoo A; Bajaj K; Goswami D; Chakrabarti P; Swarnkar MK; Gokhale RS; Varadarajan R
    Structure; 2012 Feb; 20(2):371-81. PubMed ID: 22325784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts.
    Li Z; Wong L; Li J
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S5. PubMed ID: 21689480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated use of mutagenesis data in structure prediction.
    Nanda V; DeGrado WF
    Proteins; 2005 May; 59(3):454-66. PubMed ID: 15768404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Mutational Scanning of an Oxygen-Independent Fluorescent Protein CreiLOV for Comprehensive Profiling of Mutational and Epistatic Effects.
    Chen Y; Hu R; Li K; Zhang Y; Fu L; Zhang J; Si T
    ACS Synth Biol; 2023 May; 12(5):1461-1473. PubMed ID: 37066862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting surface exposure of amino acids from protein sequence.
    Holbrook SR; Muskal SM; Kim SH
    Protein Eng; 1990 Aug; 3(8):659-65. PubMed ID: 2217139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor.
    Danielson MA; Bass RB; Falke JJ
    J Biol Chem; 1997 Dec; 272(52):32878-88. PubMed ID: 9407066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping Protein Binding Sites and Conformational Epitopes Using Cysteine Labeling and Yeast Surface Display.
    Najar TA; Khare S; Pandey R; Gupta SK; Varadarajan R
    Structure; 2017 Mar; 25(3):395-406. PubMed ID: 28132782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.