These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33778219)

  • 21. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization.
    Benoit I; Zhou M; Vivas Duarte A; Downes DJ; Todd RB; Kloezen W; Post H; Heck AJ; Maarten Altelaar AF; de Vries RP
    Sci Rep; 2015 Aug; 5():13592. PubMed ID: 26314379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blocking utilization of major plant biomass polysaccharides leads Aspergillus niger towards utilization of minor components.
    Kun RS; Garrigues S; Di Falco M; Tsang A; de Vries RP
    Microb Biotechnol; 2021 Jul; 14(4):1683-1698. PubMed ID: 34114741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification.
    Mäkelä MR; Mansouri S; Wiebenga A; Rytioja J; de Vries RP; Hildén KS
    N Biotechnol; 2016 Dec; 33(6):834-841. PubMed ID: 27469436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.
    Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV
    PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.
    Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP
    FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Transcriptional regulator of carbon catabolite repression CreA in filamentous fungus].
    Chulkin AM; Vavilova EA; Benevolenskiĭ SV
    Mol Biol (Mosk); 2010; 44(4):677-87. PubMed ID: 20873228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.
    de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH
    Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation of the carbon catabolite repressor (CREA) gene from the plant-pathogenic fungus Cochliobolus carbonum.
    Tonukari NJ; Scott-Craig JS; Walton JD
    DNA Seq; 2003 Apr; 14(2):103-7. PubMed ID: 12825351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular arabinases in Aspergillus nidulans: the effect of different cre mutations on enzyme levels.
    van der Veen P; Arst HN; Flipphi MJ; Visser J
    Arch Microbiol; 1994; 162(6):433-40. PubMed ID: 7872840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteins interacting with CreA and CreB in the carbon catabolite repression network in Aspergillus nidulans.
    Alam MA; Kelly JM
    Curr Genet; 2017 Aug; 63(4):669-683. PubMed ID: 27915380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans.
    Prathumpai W; McIntyre M; Nielsen J
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):748-53. PubMed ID: 12920487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes.
    Tudzynski B; Liu S; Kelly JM
    FEMS Microbiol Lett; 2000 Mar; 184(1):9-15. PubMed ID: 10689158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.
    Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC
    BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of Genes Encoding Plant Cell Wall-Degrading Carbohydrate-Active Enzymes by Lignocellulose-Derived Monosaccharides and Cellobiose in the White-Rot Fungus Dichomitus squalens.
    Casado López S; Peng M; Issak TY; Daly P; de Vries RP; Mäkelä MR
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol.
    Mogensen J; Nielsen HB; Hofmann G; Nielsen J
    Fungal Genet Biol; 2006 Aug; 43(8):593-603. PubMed ID: 16698295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites.
    Panozzo C; Cornillot E; Felenbok B
    J Biol Chem; 1998 Mar; 273(11):6367-72. PubMed ID: 9497366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon Catabolite Repression in Filamentous Fungi.
    Adnan M; Zheng W; Islam W; Arif M; Abubakar YS; Wang Z; Lu G
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29295552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger.
    Gruben BS; Mäkelä MR; Kowalczyk JE; Zhou M; Benoit-Gelber I; De Vries RP
    BMC Genomics; 2017 Nov; 18(1):900. PubMed ID: 29169319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel CreA-Mediated Regulation Mechanism of Cellulase Expression in the Thermophilic Fungus
    Xu X; Fan C; Song L; Li J; Chen Y; Zhang Y; Liu B; Zhang W
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production.
    Brown NA; de Gouvea PF; Krohn NG; Savoldi M; Goldman GH
    Biotechnol Biofuels; 2013 Jun; 6(1):91. PubMed ID: 23800192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.