These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33778304)

  • 21. The use of electronic-neutral penetrating peptides cyclosporin A to deliver pro-apoptotic peptide: A possibly better choice than positively charged TAT.
    Gao W; Yang X; Lin Z; He B; Mei D; Wang D; Zhang H; Zhang H; Dai W; Wang X; Zhang Q
    J Control Release; 2017 Sep; 261():174-186. PubMed ID: 28662902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Peptide delivery into cells by using the synergistic effects of a cell-penetrating Peptide and a chemical drug to alter cell permeability.
    Ma JL; Wang H; Wang YL; Luo YH; Liu CB
    Mol Pharm; 2015 Jun; 12(6):2040-8. PubMed ID: 25886885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells.
    Park J; Ryu J; Kim KA; Lee HJ; Bahn JH; Han K; Choi EY; Lee KS; Kwon HY; Choi SY
    J Gen Virol; 2002 May; 83(Pt 5):1173-1181. PubMed ID: 11961273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Prokaryotic expression and transmembrane transfer of fusion protein TAT-RIG-I-GFP].
    Sheng X; Huang D; Guo H; Liu X; Qin Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Aug; 35(8):1463-1468. PubMed ID: 31441617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient induction of anti-tumor immunity by a TAT-CEA fusion protein vaccine with poly(I:C) in a murine colorectal tumor model.
    Park JS; Kim HS; Park HM; Kim CH; Kim TG
    Vaccine; 2011 Nov; 29(47):8642-8. PubMed ID: 21945963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly(ethylene glycol) comodified liposomal delivery system via systemic administration.
    Kuai R; Yuan W; Li W; Qin Y; Tang J; Yuan M; Fu L; Ran R; Zhang Z; He Q
    Mol Pharm; 2011 Dec; 8(6):2151-61. PubMed ID: 21981683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles.
    Chu Y; Chen N; Yu H; Mu H; He B; Hua H; Wang A; Sun K
    Int J Nanomedicine; 2017; 12():1353-1368. PubMed ID: 28260884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(ethylene glycol) shell-sheddable TAT-modified core cross-linked nano-micelles: TAT-enhanced cellular uptake and lysosomal pH-triggered doxorubicin release.
    Zhang Y; Xiao Y; Huang Y; He Y; Xu Y; Lu W; Yu J
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110772. PubMed ID: 31999965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy.
    Polyakov V; Sharma V; Dahlheimer JL; Pica CM; Luker GD; Piwnica-Worms D
    Bioconjug Chem; 2000; 11(6):762-71. PubMed ID: 11087323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time.
    Ferrari A; Pellegrini V; Arcangeli C; Fittipaldi A; Giacca M; Beltram F
    Mol Ther; 2003 Aug; 8(2):284-94. PubMed ID: 12907151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection.
    Jeong C; Yoo J; Lee D; Kim YC
    Biomater Res; 2016; 20(1):28. PubMed ID: 27606074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study.
    Tseng YL; Liu JJ; Hong RL
    Mol Pharmacol; 2002 Oct; 62(4):864-72. PubMed ID: 12237333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Cytoplasmic Delivery of Antisense Probes Assisted by Cyclized-Peptide-Mediated Photoinduced Endosomal Escape.
    Tan X; Bruchez MP; Armitage BA
    Chembiochem; 2019 Mar; 20(5):727-733. PubMed ID: 30452106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
    Silhol M; Tyagi M; Giacca M; Lebleu B; Vivès E
    Eur J Biochem; 2002 Jan; 269(2):494-501. PubMed ID: 11856307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Efficiency of Tat Cell Penetrating Peptide for Intracellular Uptake of HIV-1 Nef Expressed in E. coli and Mammalian Cell.
    Kadkhodayan S; Bolhassani A; Sadat SM; Irani S; Fotouhi F
    Curr Drug Deliv; 2017; 14(4):536-542. PubMed ID: 27719633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.
    Lönn P; Kacsinta AD; Cui XS; Hamil AS; Kaulich M; Gogoi K; Dowdy SF
    Sci Rep; 2016 Sep; 6():32301. PubMed ID: 27604151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate.
    Peng J; Rao Y; Yang X; Jia J; Wu Y; Lu J; Tao Y; Tu W
    Neurosci Lett; 2017 May; 650():153-160. PubMed ID: 28450191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo.
    Zhu Y; Zhang J; Meng F; Deng C; Cheng R; Feijen J; Zhong Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35651-35663. PubMed ID: 28952305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CPP-mediated protein delivery in a noncovalent form: proof-of-concept for percutaneous and intranasal delivery.
    Wang Z; Chen Y; Liu E; Gong J; Shin MC; Huang Y
    Protein Pept Lett; 2014; 21(11):1129-36. PubMed ID: 25106905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor.
    Li XX; Chen J; Shen JM; Zhuang R; Zhang SQ; Zhu ZY; Ma JB
    Int J Pharm; 2018 Jul; 545(1-2):274-285. PubMed ID: 29733971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.