These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33779156)

  • 1. Foliar Photodegradation in Pesticide Fate Modeling: Development and Evaluation of the Pesticide Dissipation from Agricultural Land (PeDAL) Model.
    Lyons SM; Hageman KJ
    Environ Sci Technol; 2021 Apr; 55(8):4842-4850. PubMed ID: 33779156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodegradation of pesticides on plant and soil surfaces.
    Katagi T
    Rev Environ Contam Toxicol; 2004; 182():1-189. PubMed ID: 15217019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants.
    Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E
    Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodegradation and volatility of pesticides: chamber experiments.
    Kromer T; Ophoff H; Stork A; Führ F
    Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting rice pesticide fate and transport following foliage application by an updated PCPF-1 model.
    Tu LH; Boulange J; Phong TK; Thuyet DQ; Watanabe H; Takagi K
    J Environ Manage; 2021 Jan; 277():111356. PubMed ID: 32950777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Trends in Pesticide Volatilization from Agricultural Fields Using the Pesticide Loss via Volatilization Model.
    Taylor M; Lyons SM; Davie-Martin CL; Geoghegan TS; Hageman KJ
    Environ Sci Technol; 2020 Feb; 54(4):2202-2209. PubMed ID: 31858785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting pesticide dissipation half-life intervals in plants with machine learning models.
    Shen Y; Zhao E; Zhang W; Baccarelli AA; Gao F
    J Hazard Mater; 2022 Aug; 436():129177. PubMed ID: 35643003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Leaf Penetration and Volatilization of Chlorothalonil and Epoxiconazole Applied on Wheat Leaves in a Laboratory-Scale Experiment.
    Lichiheb N; Bedos C; Personne E; Benoit P; Bergheaud V; Fanucci O; Bouhlel J; Barriuso E
    J Environ Qual; 2015 Nov; 44(6):1782-90. PubMed ID: 26641330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreduction of chlorothalonil fungicide on plant leaf models.
    Monadjemi S; El Roz M; Richard C; Ter Halle A
    Environ Sci Technol; 2011 Nov; 45(22):9582-9. PubMed ID: 21950599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodegradation of bentazon, clopyralid, and triclopyr on model leaves: importance of a systematic evaluation of pesticide photostability on crops.
    Eyheraguibel B; Ter Halle A; Richard C
    J Agric Food Chem; 2009 Mar; 57(5):1960-6. PubMed ID: 19222158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting and measuring environmental concentration of pesticides in air after soil application.
    Ferrari F; Trevisan M; Capri E
    J Environ Qual; 2003; 32(5):1623-33. PubMed ID: 14535302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Effects of Temperature, Relative Humidity, Leaf Collection Date, and Foliar Penetration on Leaf-Air Partitioning of Chlorpyrifos.
    Kinross AD; Hageman KJ; Luu C
    Environ Sci Technol; 2022 Sep; 56(18):13058-13065. PubMed ID: 36067451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of pesticides in water-sediment systems.
    Katagi T
    Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating half-lives for pesticide dissipation from plants.
    Fantke P; Gillespie BW; Juraske R; Jolliet O
    Environ Sci Technol; 2014; 48(15):8588-602. PubMed ID: 24968074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodegradation of clothianidin under simulated California rice field conditions.
    Mulligan RA; Redman ZC; Keener MR; Ball DB; Tjeerdema RS
    Pest Manag Sci; 2016 Jul; 72(7):1322-7. PubMed ID: 26374572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of pesticide dissipation half-lives in plants.
    Fantke P; Juraske R
    Environ Sci Technol; 2013 Apr; 47(8):3548-62. PubMed ID: 23521068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview on common aspects influencing the dissipation pattern of pesticides: a review.
    Farha W; Abd El-Aty AM; Rahman MM; Shin HC; Shim JH
    Environ Monit Assess; 2016 Dec; 188(12):693. PubMed ID: 27888425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of lysimeter experiments for simulating pesticide dissipation in paddy fields. Part 2: Nursery-box application and foliar application.
    Kondo K; Wakasone Y; Okuno J; Nakamura N; Muraoka T; Iijima K; Ohyama K
    J Pestic Sci; 2019 Feb; 44(1):61-70. PubMed ID: 30820174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.