These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33779179)

  • 1. Size Dependent Fragmentation Chemistry of Short Doubly Protonated Tryptic Peptides.
    Guan S; Bythell BJ
    J Am Soc Mass Spectrom; 2021 Apr; 32(4):1020-1032. PubMed ID: 33779179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmentation of doubly-protonated Pro-His-Xaa tripeptides: formation of b(2)(2+) ions.
    Knapp-Mohammady M; Young AB; Paizs B; Harrison AG
    J Am Soc Mass Spectrom; 2009 Nov; 20(11):2135-43. PubMed ID: 19683937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge states of y ions in the collision-induced dissociation of doubly charged tryptic peptide ions.
    Neta P; Stein SE
    J Am Soc Mass Spectrom; 2011 May; 22(5):898-905. PubMed ID: 21472524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Protonated Isomers and Coulombic Barriers to Dissociation of Doubly Protonated Ala
    Haeffner F; Irikura KK
    J Am Soc Mass Spectrom; 2017 Oct; 28(10):2170-2180. PubMed ID: 28699065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides.
    Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides.
    Willard BB; Kinter M
    J Am Soc Mass Spectrom; 2001 Dec; 12(12):1262-71. PubMed ID: 11766753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X)
    Tsiatsiani L; Giansanti P; Scheltema RA; van den Toorn H; Overall CM; Altelaar AF; Heck AJ
    J Proteome Res; 2017 Feb; 16(2):852-861. PubMed ID: 28111955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-phase fragmentation characteristics of benzyl-aminated lysyl-containing tryptic peptides.
    Simon ES; Papoulias PG; Andrews PC
    J Am Soc Mass Spectrom; 2010 Sep; 21(9):1624-32. PubMed ID: 20471281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation.
    Tang XJ; Thibault P; Boyd RK
    Anal Chem; 1993 Oct; 65(20):2824-34. PubMed ID: 7504416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of protein ubiquitylation by electrospray ionization tandem mass spectrometric analysis of sulfonated tryptic peptides.
    Wang D; Kalume D; Pickart C; Pandey A; Cotter RJ
    Anal Chem; 2006 Jun; 78(11):3681-7. PubMed ID: 16737224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-separation reactions of doubly-protonated peptides: effect of peptide chain length.
    Harrison AG
    J Am Soc Mass Spectrom; 2009 Oct; 20(10):1890-5. PubMed ID: 19651525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry.
    Dupré M; Cantel S; Martinez J; Enjalbal C
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):330-46. PubMed ID: 22095165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation.
    Ren J; Tian Y; Hossain E; Connolly MD
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):646-61. PubMed ID: 26832347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton transfer reactions for improved peptide characterisation.
    Rožman M; Schneider A; Gaskell SJ
    J Mass Spectrom; 2011 Jun; 46(6):529-34. PubMed ID: 21630380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptic y(++) fragment ion distributions are guided by Coulombic repulsion.
    Irikura KK; Merle JK; Simón-Manso Y
    J Am Soc Mass Spectrom; 2012 Mar; 23(3):483-8. PubMed ID: 22183957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of energy-resolved vibrational activation/dissociation characteristics of protonated and sodiated high mannose N-glycopeptides.
    Aboufazeli F; Kolli V; Dodds ED
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):587-95. PubMed ID: 25582509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for quantitative peptides analysis by selected electron transfer reaction monitoring.
    Wei BY; Juang YM; Lai CC
    J Chromatogr A; 2010 Oct; 1217(44):6927-31. PubMed ID: 20850119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin.
    Zhang H; Grabenauer M; Bowers MT; Dearden DV
    J Phys Chem A; 2009 Feb; 113(8):1508-17. PubMed ID: 19191519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining Linear Free Energy Relationships in Peptide Fragmentation Using Derivatization and Targeted Mass Spectrometry.
    Shen Y; Nemati R; Wang L; Yao X
    Anal Chem; 2018 Feb; 90(3):1587-1594. PubMed ID: 29281784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.