These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 33779743)
21. Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes. Ravaut M; Harish V; Sadeghi H; Leung KK; Volkovs M; Kornas K; Watson T; Poutanen T; Rosella LC JAMA Netw Open; 2021 May; 4(5):e2111315. PubMed ID: 34032855 [TBL] [Abstract][Full Text] [Related]
22. Development and Performance of Electronic Pediatric Risk of Mortality and Pediatric Logistic Organ Dysfunction-2 Automated Acuity Scores. Horvat CM; Ogoe H; Kantawala S; Au AK; Fink EL; Yablonsky E; Kochanek PM; Suresh S; Clark RSB Pediatr Crit Care Med; 2019 Aug; 20(8):e372-e379. PubMed ID: 31397827 [TBL] [Abstract][Full Text] [Related]
23. Development and Validation of Machine Learning Models for Prediction of 1-Year Mortality Utilizing Electronic Medical Record Data Available at the End of Hospitalization in Multicondition Patients: a Proof-of-Concept Study. Sahni N; Simon G; Arora R J Gen Intern Med; 2018 Jun; 33(6):921-928. PubMed ID: 29383551 [TBL] [Abstract][Full Text] [Related]
24. Machine Learning Approach to Inpatient Violence Risk Assessment Using Routinely Collected Clinical Notes in Electronic Health Records. Menger V; Spruit M; van Est R; Nap E; Scheepers F JAMA Netw Open; 2019 Jul; 2(7):e196709. PubMed ID: 31268542 [TBL] [Abstract][Full Text] [Related]
25. Effect of an outpatient antimicrobial stewardship intervention on broad-spectrum antibiotic prescribing by primary care pediatricians: a randomized trial. Gerber JS; Prasad PA; Fiks AG; Localio AR; Grundmeier RW; Bell LM; Wasserman RC; Keren R; Zaoutis TE JAMA; 2013 Jun; 309(22):2345-52. PubMed ID: 23757082 [TBL] [Abstract][Full Text] [Related]
26. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560 [TBL] [Abstract][Full Text] [Related]
27. A Time-Updated, Parsimonious Model to Predict AKI in Hospitalized Children. Sandokji I; Yamamoto Y; Biswas A; Arora T; Ugwuowo U; Simonov M; Saran I; Martin M; Testani JM; Mansour S; Moledina DG; Greenberg JH; Wilson FP J Am Soc Nephrol; 2020 Jun; 31(6):1348-1357. PubMed ID: 32381598 [TBL] [Abstract][Full Text] [Related]
28. The Development and Validation of a Machine Learning Model to Predict Bacteremia and Fungemia in Hospitalized Patients Using Electronic Health Record Data. Bhavani SV; Lonjers Z; Carey KA; Afshar M; Gilbert ER; Shah NS; Huang ES; Churpek MM Crit Care Med; 2020 Nov; 48(11):e1020-e1028. PubMed ID: 32796184 [TBL] [Abstract][Full Text] [Related]
29. Experience With Rapid Microarray-Based Diagnostic Technology and Antimicrobial Stewardship for Patients With Gram-Positive Bacteremia. Neuner EA; Pallotta AM; Lam SW; Stowe D; Gordon SM; Procop GW; Richter SS Infect Control Hosp Epidemiol; 2016 Nov; 37(11):1361-1366. PubMed ID: 27767002 [TBL] [Abstract][Full Text] [Related]
30. Development and Validation of Machine Learning Models to Predict Admission From Emergency Department to Inpatient and Intensive Care Units. Fenn A; Davis C; Buckland DM; Kapadia N; Nichols M; Gao M; Knechtle W; Balu S; Sendak M; Theiling BJ Ann Emerg Med; 2021 Aug; 78(2):290-302. PubMed ID: 33972128 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of a pharmacist-led antimicrobial stewardship service in a pediatric emergency department. MacMillan KM; MacInnis M; Fitzpatrick E; Hurley KF; MacPhee S; Matheson K; Black EK Int J Clin Pharm; 2019 Dec; 41(6):1592-1598. PubMed ID: 31650506 [TBL] [Abstract][Full Text] [Related]
32. Self-supervised machine learning using adult inpatient data produces effective models for pediatric clinical prediction tasks. Lemmon J; Guo LL; Steinberg E; Morse KE; Fleming SL; Aftandilian C; Pfohl SR; Posada JD; Shah N; Fries J; Sung L J Am Med Inform Assoc; 2023 Nov; 30(12):2004-2011. PubMed ID: 37639620 [TBL] [Abstract][Full Text] [Related]
33. Study protocol for a multicentre, cluster randomised, superiority trial evaluating the impact of computerised decision support, audit and feedback on antibiotic use: the COMPuterized Antibiotic Stewardship Study (COMPASS). Catho G; De Kraker M; Waldispühl Suter B; Valotti R; Harbarth S; Kaiser L; Elzi L; Meyer R; Bernasconi E; Huttner BD BMJ Open; 2018 Jun; 8(6):e022666. PubMed ID: 29950480 [TBL] [Abstract][Full Text] [Related]
34. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
35. Predicting the Risk of Inpatient Hypoglycemia With Machine Learning Using Electronic Health Records. Ruan Y; Bellot A; Moysova Z; Tan GD; Lumb A; Davies J; van der Schaar M; Rea R Diabetes Care; 2020 Jul; 43(7):1504-1511. PubMed ID: 32350021 [TBL] [Abstract][Full Text] [Related]
36. Identifying excessive length of antibiotic treatment duration for hospital-acquired infections: a semi-automated approach to support antimicrobial stewardship. Kuijpers SME; van Haeringen KJ; Groot T; Sigaloff KCE; van Hest RM; Prins JM; Schade RP Antimicrob Resist Infect Control; 2024 May; 13(1):52. PubMed ID: 38764096 [TBL] [Abstract][Full Text] [Related]
37. Electronic phenotyping of health outcomes of interest using a linked claims-electronic health record database: Findings from a machine learning pilot project. Gibson TB; Nguyen MD; Burrell T; Yoon F; Wong J; Dharmarajan S; Ouellet-Hellstrom R; Hua W; Ma Y; Baro E; Bloemers S; Pack C; Kennedy A; Toh S; Ball R J Am Med Inform Assoc; 2021 Jul; 28(7):1507-1517. PubMed ID: 33712852 [TBL] [Abstract][Full Text] [Related]
38. Factors affecting the antimicrobial changes during treatment for acute otitis media in Japan: A retrospective cohort study using classification and regression trees (CART) analysis. Kono M; Murakami D; Sakatani H; Okuda K; Kinoshita T; Hijiya M; Iyo T; Shiga T; Morita Y; Itahashi K; Sasagawa Y; Iwama Y; Yamaguchi T; Hotomi M J Infect Chemother; 2024 Sep; 30(9):832-837. PubMed ID: 38417479 [TBL] [Abstract][Full Text] [Related]
39. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study. Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223 [TBL] [Abstract][Full Text] [Related]
40. Predicting Acute Graft-Versus-Host Disease Using Machine Learning and Longitudinal Vital Sign Data From Electronic Health Records. Tang S; Chappell GT; Mazzoli A; Tewari M; Choi SW; Wiens J JCO Clin Cancer Inform; 2020 Feb; 4():128-135. PubMed ID: 32083957 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]