These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33780342)

  • 1. Dynamic Module Detection in Temporal Attributed Networks of Cancers.
    Li D; Zhang S; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2219-2230. PubMed ID: 33780342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrative Framework of Heterogeneous Genomic Data for Cancer Dynamic Modules Based on Matrix Decomposition.
    Ma X; Sun P; Gong M
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):305-316. PubMed ID: 32750874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regularized Multi-View Subspace Clustering for Common Modules Across Cancer Stages.
    Zhang E; Ma X
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29701681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting Stage-Specific and Dynamic Modules Through Analyzing Multiple Networks Associated with Cancer Progression.
    Ma X; Tang W; Wang P; Guo X; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):647-658. PubMed ID: 27845671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering of Cancer Attributed Networks by Dynamically and Jointly Factorizing Multi-Layer Graphs.
    Huang Z; Wang Y; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2737-2748. PubMed ID: 34143738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple network algorithm for epigenetic modules via the integration of genome-wide DNA methylation and gene expression data.
    Ma X; Liu Z; Zhang Z; Huang X; Tang W
    BMC Bioinformatics; 2017 Jan; 18(1):72. PubMed ID: 28137264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression.
    Shi Z; Derow CK; Zhang B
    BMC Syst Biol; 2010 May; 4():74. PubMed ID: 20507583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Objective Optimization Algorithm to Discover Condition-Specific Modules in Multiple Networks.
    Ma X; Sun P; Zhao J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29240706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrative Framework for Protein Interaction Network and Methylation Data to Discover Epigenetic Modules.
    Ma X; Sun P; Zhang ZY
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1855-1866. PubMed ID: 29994031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HetFCM: functional co-module discovery by heterogeneous network co-clustering.
    Tan H; Guo M; Chen J; Wang J; Yu G
    Nucleic Acids Res; 2024 Feb; 52(3):e16. PubMed ID: 38088228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons of gene coexpression network modules in breast cancer and ovarian cancer.
    Zhang S
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):8. PubMed ID: 29671401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of microRNAs and Transcription Factors Co-Regulatory Modules by Integrating Multiple Types of Genomic Data.
    Luo J; Xiang G; Pan C
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):51-59. PubMed ID: 28092569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery.
    Liu Y; Ye X; Yu CY; Shao W; Hou J; Feng W; Zhang J; Huang K
    BMC Bioinformatics; 2021 Oct; 22(Suppl 4):111. PubMed ID: 34689740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling osteosarcoma progression by measuring the connectivity dynamics using an inference of multiple differential modules algorithm.
    Liu B; Zhang Z; Dai EN; Tian JX; Xin JZ; Xu L
    Mol Med Rep; 2017 Aug; 16(2):1047-1054. PubMed ID: 28586048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis.
    Guo L; Mao L; Lu W; Yang J
    Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.
    Gonçalves JP; Aires RS; Francisco AP; Madeira SC
    PLoS One; 2012; 7(5):e35977. PubMed ID: 22563474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling disease progression using dynamics of pathway connectivity.
    Ma X; Gao L; Tan K
    Bioinformatics; 2014 Aug; 30(16):2343-50. PubMed ID: 24771518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-Specific Modules Detection in Cancer Multi-Layer Networks.
    Ma X; Zhao W; Wu W
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1170-1179. PubMed ID: 35609099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.