These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 3378051)

  • 1. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase.
    Perry SB; McAuliffe J; Balschi JA; Hickey PR; Ingwall JS
    Biochemistry; 1988 Mar; 27(6):2165-72. PubMed ID: 3378051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation.
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Biochemistry; 1991 Mar; 30(10):2585-93. PubMed ID: 2001348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy.
    Zahler R; Ingwall JS
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1022-8. PubMed ID: 1566885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart.
    Neubauer S; Hamman BL; Perry SB; Bittl JA; Ingwall JS
    Circ Res; 1988 Jul; 63(1):1-15. PubMed ID: 3383370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure.
    Nascimben L; Friedrich J; Liao R; Pauletto P; Pessina AC; Ingwall JS
    Circulation; 1995 Mar; 91(6):1824-33. PubMed ID: 7882493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A(31)P NMR magnetization transfer study of the intact beating rat heart.
    Spindler M; Saupe KW; Tian R; Ahmed S; Matlib MA; Ingwall JS
    J Mol Cell Cardiol; 1999 Dec; 31(12):2175-89. PubMed ID: 10640445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat.
    Bittl JA; DeLayre J; Ingwall JS
    Biochemistry; 1987 Sep; 26(19):6083-90. PubMed ID: 3689762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart.
    Saupe KW; Spindler M; Hopkins JC; Shen W; Ingwall JS
    J Biol Chem; 2000 Jun; 275(26):19742-6. PubMed ID: 10867023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts.
    Hamman BL; Bittl JA; Jacobus WE; Allen PD; Spencer RS; Tian R; Ingwall JS
    Am J Physiol; 1995 Sep; 269(3 Pt 2):H1030-6. PubMed ID: 7573498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentation of creatine kinases during perinatal development of mammalian heart.
    Hoerter JA; Ventura-Clapier R; Kuznetsov A
    Mol Cell Biochem; 1994; 133-134():277-86. PubMed ID: 7808459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study.
    Bittl JA; Ingwall JS
    J Biol Chem; 1985 Mar; 260(6):3512-7. PubMed ID: 3972835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic characterization of human heart and skeletal muscle CK isoenzymes.
    Schneider C; Stull GA; Apple FS
    Enzyme; 1988; 39(4):220-6. PubMed ID: 3391161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial creatine kinase from human heart muscle: purification and characterization of the crystallized isoenzyme.
    Blum HE; Deus B; Gerok W
    J Biochem; 1983 Oct; 94(4):1247-57. PubMed ID: 6418727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.
    Bittl JA; Ingwall JS
    Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in the myocardial creatine kinase system during chronic anaemic hypoxia.
    Field ML; Clark JF; Henderson C; Seymour AM; Radda GK
    Cardiovasc Res; 1994 Jan; 28(1):86-91. PubMed ID: 8111796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of mitochondrial creatine kinase fluxes in intact heart mitochondria using 31P-saturation transfer nuclear magnetic resonance spectroscopy.
    Jahnke D; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1998 Jul; 1365(3):503-12. PubMed ID: 9711302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is creatine kinase a target for AMP-activated protein kinase in the heart?
    Ingwall JS
    J Mol Cell Cardiol; 2002 Sep; 34(9):1111-20. PubMed ID: 12392883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.