BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33780851)

  • 21. Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics.
    Li DS; Avazmohammadi R; Merchant SS; Kawamura T; Hsu EW; Gorman JH; Gorman RC; Sacks MS
    J Mech Behav Biomed Mater; 2020 Mar; 103():103508. PubMed ID: 32090941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo estimation of passive biomechanical properties of human myocardium.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    Med Biol Eng Comput; 2018 Sep; 56(9):1615-1631. PubMed ID: 29479659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness.
    Ren M; Ong CW; Buist ML; Yap CH
    J Mech Behav Biomed Mater; 2022 Oct; 134():105383. PubMed ID: 35932646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanics of infarcted left Ventricle-A review of experiments.
    Li W
    J Mech Behav Biomed Mater; 2020 Mar; 103():103591. PubMed ID: 32090920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    J Biomech; 2010 Jun; 43(9):1745-53. PubMed ID: 20227697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doppler echocardiographic assessment and cardiac gene expression analysis of the left ventricle in myocardial infarcted rats.
    Shimizu N; Yoshiyama M; Takeuchi K; Hanatani A; Kim S; Omura T; Iwao H; Yoshikawa J
    Jpn Circ J; 1998 Jun; 62(6):436-42. PubMed ID: 9652320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of material parameters and strain energy function on the wall stresses in the left ventricle.
    Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel method for quantifying the in-vivo mechanical effect of material injected into a myocardial infarction.
    Wenk JF; Eslami P; Zhang Z; Xu C; Kuhl E; Gorman JH; Robb JD; Ratcliffe MB; Gorman RC; Guccione JM
    Ann Thorac Surg; 2011 Sep; 92(3):935-41. PubMed ID: 21871280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Material stiffness parameters as potential predictors of presence of left ventricle myocardial infarction: 3D echo-based computational modeling study.
    Fan L; Yao J; Yang C; Wu Z; Xu D; Tang D
    Biomed Eng Online; 2016 Apr; 15():34. PubMed ID: 27044441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment.
    Cansız FB; Dal H; Kaliske M
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1160-1172. PubMed ID: 24533658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive ventricular mechanics modelling using MRI of structure and function.
    Wang VY; Lam HI; Ennis DB; Young AA; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):814-21. PubMed ID: 18982680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel micro-to-macro approach for cardiac tissue mechanics.
    Haddad SM; Samani A
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):215-229. PubMed ID: 27460134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studying the influence of hydrogel injections into the infarcted left ventricle using the element-free Galerkin method.
    Legner D; Skatulla S; MBewu J; Rama RR; Reddy BD; Sansour C; Davies NH; Franz T
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):416-29. PubMed ID: 24574184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall.
    Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM
    J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium?
    Leor J; Patterson M; Quinones MJ; Kedes LH; Kloner RA
    Circulation; 1996 Nov; 94(9 Suppl):II332-6. PubMed ID: 8901770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.