BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 33781254)

  • 1. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa.
    Connolly JB; Mumford JD; Fuchs S; Turner G; Beech C; North AR; Burt A
    Malar J; 2021 Mar; 20(1):170. PubMed ID: 33781254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria.
    Qureshi A; Connolly JB
    Malar J; 2023 Aug; 22(1):234. PubMed ID: 37580703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control.
    Su MP; Georgiades M; Bagi J; Kyrou K; Crisanti A; Albert JT
    Parasit Vectors; 2020 Oct; 13(1):507. PubMed ID: 33028410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Problem formulation for gene drive mosquitoes designed to reduce malaria transmission in Africa: results from four regional consultations 2016-2018.
    Teem JL; Ambali A; Glover B; Ouedraogo J; Makinde D; Roberts A
    Malar J; 2019 Oct; 18(1):347. PubMed ID: 31615576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recommendations for environmental risk assessment of gene drive applications for malaria vector control.
    Connolly JB; Mumford JD; Glandorf DCM; Hartley S; Lewis OT; Evans SW; Turner G; Beech C; Sykes N; Coulibaly MB; Romeis J; Teem JL; Tonui W; Lovett B; Mankad A; Mnzava A; Fuchs S; Hackett TD; Landis WG; Marshall JM; Aboagye-Antwi F
    Malar J; 2022 May; 21(1):152. PubMed ID: 35614489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considerations for first field trials of low-threshold gene drive for malaria vector control.
    Connolly JB; Burt A; Christophides G; Diabate A; Habtewold T; Hancock PA; James AA; Kayondo JK; Lwetoijera DW; Manjurano A; McKemey AR; Santos MR; Windbichler N; Randazzo F
    Malar J; 2024 May; 23(1):156. PubMed ID: 38773487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector.
    Facchinelli L; North AR; Collins CM; Menichelli M; Persampieri T; Bucci A; Spaccapelo R; Crisanti A; Benedict MQ
    Parasit Vectors; 2019 Feb; 12(1):70. PubMed ID: 30728060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation gene drive for population modification of the malaria vector mosquito,
    Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental population modification of the malaria vector mosquito, Anopheles stephensi.
    Pham TB; Phong CH; Bennett JB; Hwang K; Jasinskiene N; Parker K; Stillinger D; Marshall JM; Carballar-Lejarazú R; James AA
    PLoS Genet; 2019 Dec; 15(12):e1008440. PubMed ID: 31856182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field.
    Hammond A; Pollegioni P; Persampieri T; North A; Minuz R; Trusso A; Bucci A; Kyrou K; Morianou I; Simoni A; Nolan T; Müller R; Crisanti A
    Nat Commun; 2021 Jul; 12(1):4589. PubMed ID: 34321476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages.
    D'Amato R; Taxiarchi C; Galardini M; Trusso A; Minuz RL; Grilli S; Somerville AGT; Shittu D; Khalil AS; Galizi R; Crisanti A; Simoni A; Müller R
    Nat Commun; 2024 Feb; 15(1):952. PubMed ID: 38296981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of the mermithid nematode, Romanomermis iyengari, for the biocontrol of Anopheles gambiae, the major malaria vector in sub-Saharan Africa.
    Abagli AZ; Alavo TBC; Perez-Pacheco R; Platzer EG
    Parasit Vectors; 2019 May; 12(1):253. PubMed ID: 31118105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene drive in species complexes: defining target organisms.
    Connolly JB; Romeis J; Devos Y; Glandorf DCM; Turner G; Coulibaly MB
    Trends Biotechnol; 2023 Feb; 41(2):154-164. PubMed ID: 35868886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual effector population modification gene-drive strains of the African malaria mosquitoes,
    Carballar-Lejarazú R; Dong Y; Pham TB; Tushar T; Corder RM; Mondal A; Sánchez C HM; Lee HF; Marshall JM; Dimopoulos G; James AA
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2221118120. PubMed ID: 37428915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae.
    Simoni A; Hammond AM; Beaghton AK; Galizi R; Taxiarchi C; Kyrou K; Meacci D; Gribble M; Morselli G; Burt A; Nolan T; Crisanti A
    Nat Biotechnol; 2020 Sep; 38(9):1054-1060. PubMed ID: 32393821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement.
    Hoermann A; Tapanelli S; Capriotti P; Del Corsano G; Masters EK; Habtewold T; Christophides GK; Windbichler N
    Elife; 2021 Apr; 10():. PubMed ID: 33845943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito.
    Garrood WT; Kranjc N; Petri K; Kim DY; Guo JA; Hammond AM; Morianou I; Pattanayak V; Joung JK; Crisanti A; Simoni A
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria.
    Wise IJ; Borry P
    J Bioeth Inq; 2022 Sep; 19(3):371-380. PubMed ID: 35175513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae.
    Ellis DA; Avraam G; Hoermann A; Wyer CAS; Ong YX; Christophides GK; Windbichler N
    PLoS Genet; 2022 Jun; 18(6):e1010244. PubMed ID: 35653396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.