These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33781264)

  • 1. Foaming of rhamnolipids fermentation: impact factors and fermentation strategies.
    Gong Z; Yang G; Che C; Liu J; Si M; He Q
    Microb Cell Fact; 2021 Mar; 20(1):77. PubMed ID: 33781264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control.
    Jiang J; Zu Y; Li X; Meng Q; Long X
    Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Surfactants: Alternative to Vegetable Oil Surfactants.
    Gudiña EJ; Rodrigues LR
    Methods Mol Biol; 2019; 1995():383-393. PubMed ID: 31148140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture.
    Camilios Neto D; Meira JA; de Araújo JM; Mitchell DA; Krieger N
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor.
    Pinzon NM; Cook AG; Ju LK
    Biotechnol Prog; 2013; 29(2):352-8. PubMed ID: 23359613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils.
    Gong Z; Peng Y; Wang Q
    Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximize rhamnolipid production with low foaming and high yield.
    Sodagari M; Invally K; Ju LK
    Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine.
    Chen J; Wu Q; Hua Y; Chen J; Zhang H; Wang H
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8309-8319. PubMed ID: 29018916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1.
    Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM
    Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production.
    Moya Ramírez I; Altmajer Vaz D; Banat IM; Marchant R; Jurado Alameda E; García Román M
    Bioresour Technol; 2016 Apr; 205():1-6. PubMed ID: 26796482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.
    Partovi M; Lotfabad TB; Roostaazad R; Bahmaei M; Tayyebi S
    World J Microbiol Biotechnol; 2013 Jun; 29(6):1039-47. PubMed ID: 23361970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption.
    Wu J; Zhang J; Wang P; Zhu L; Gao M; Zheng Z; Zhan X
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1611-1619. PubMed ID: 28803337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving "Non-Foaming" Rhamnolipid Production and Productivity Rebounds of
    Gong Z; He Q; Liu J; Zhou J; Che C; Si M; Yang G
    Microorganisms; 2022 May; 10(6):. PubMed ID: 35744608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications.
    Maier RM; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):625-33. PubMed ID: 11131386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soy molasses as a fermentation substrate for the production of biosurfactant using Pseudomonas aeruginosa ATCC 10145.
    Rodrigues MS; Moreira FS; Cardoso VL; de Resende MM
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18699-18709. PubMed ID: 28702915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced rhamnolipids production in Pseudomonas aeruginosa SG by selectively blocking metabolic bypasses of glycosyl and fatty acid precursors.
    Lei L; Zhao F; Han S; Zhang Y
    Biotechnol Lett; 2020 Jun; 42(6):997-1002. PubMed ID: 32060764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Biosurfactants-an Ecofriendly Boon to Industries for Green Revolution.
    Sharma P; Sharma N
    Recent Pat Biotechnol; 2020; 14(3):169-183. PubMed ID: 31830890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative production of rhamnolipid and purification by adsorption chromatography.
    Jadhav J; Dutta S; Kale S; Pratap A
    Prep Biochem Biotechnol; 2018 Mar; 48(3):234-241. PubMed ID: 29313452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.