These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 3378150)

  • 1. Differential distribution of beta and theta EEG activity in the entorhinal cortex of the cat.
    Boeijinga PH; Lopes da Silva FH
    Brain Res; 1988 May; 448(2):272-86. PubMed ID: 3378150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulations of EEG activity in the entorhinal cortex and forebrain olfactory areas during odour sampling.
    Boeijinga PH; Lopes da Silva FH
    Brain Res; 1989 Jan; 478(2):257-68. PubMed ID: 2924130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theta oscillations and sensorimotor performance.
    Kay LM
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3863-8. PubMed ID: 15738424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inputs from the olfactory bulb and olfactory cortex to the entorhinal cortex in the cat. II. Physiological studies.
    Boeijinga PH; Van Groen T
    Exp Brain Res; 1984; 57(1):40-8. PubMed ID: 6519229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method to estimate time delays between EEG signals applied to beta activity of the olfactory cortical areas.
    Boeijinga PH; Lopes da Silva FH
    Electroencephalogr Clin Neurophysiol; 1989 Sep; 73(3):198-205. PubMed ID: 2475324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal sources of theta rhythm in the entorhinal cortex of the rat. II. Phase relations between unit discharges and theta field potentials.
    Alonso A; García-Austt E
    Exp Brain Res; 1987; 67(3):502-9. PubMed ID: 3653312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reafference and attractors in the olfactory system during odor recognition.
    Kay LM; Lancaster LR; Freeman WJ
    Int J Neural Syst; 1996 Sep; 7(4):489-95. PubMed ID: 8968840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits.
    Barrie JM; Freeman WJ; Lenhart MD
    J Neurophysiol; 1996 Jul; 76(1):520-39. PubMed ID: 8836241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rhythmic slow activity recorded from entorhinal cortex in freely moving cats.
    Błaszczyk M; Grabowski R; Eckersdorf B; Gołebiewski H; Konopacki J
    Acta Neurobiol Exp (Wars); 1996; 56(1):161-4. PubMed ID: 8787169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal sources of theta rhythm in the entorhinal cortex of the rat. I. Laminar distribution of theta field potentials.
    Alonso A; García-Austt E
    Exp Brain Res; 1987; 67(3):493-501. PubMed ID: 3653311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The olfactory bulb modulates entorhinal cortex oscillations during spatial working memory.
    Salimi M; Tabasi F; Nazari M; Ghazvineh S; Salimi A; Jamaati H; Raoufy MR
    J Physiol Sci; 2021 Jun; 71(1):21. PubMed ID: 34193043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic organization of olfactory inputs and local circuits in the entorhinal cortex: a current source density analysis in the cat.
    Van Groen T; Lopes da Silva FH; Wadman WJ
    Exp Brain Res; 1987; 67(3):615-22. PubMed ID: 3653319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats.
    Carlson KS; Dillione MR; Wesson DW
    J Neurophysiol; 2014 May; 111(10):2109-23. PubMed ID: 24598519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic distribution of interictal brain electrical activity in idiopathic generalized epilepsy.
    Clemens B; Bessenyei M; Piros P; Tóth M; Seress L; Kondákor I
    Epilepsia; 2007 May; 48(5):941-9. PubMed ID: 17381440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrinsic modulation of theta field activity in the entorhinal cortex of the anesthetized rat.
    Dickson CT; Trepel C; Bland BH
    Hippocampus; 1994 Feb; 4(1):37-51. PubMed ID: 8061751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial organization of EEGs from olfactory bulb and cortex.
    Bressler SL
    Electroencephalogr Clin Neurophysiol; 1984 Mar; 57(3):270-6. PubMed ID: 6199188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of the septal and entorhinal inputs in generating hippocampal electrical activity in the wakefulness-sleep cycle of the cat].
    Nachkebiia NG; Nachkebiia AIa; Oniani LT
    Neirofiziologiia; 1987; 19(5):622-30. PubMed ID: 3447062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of theta-related cells in the entorhinal cortex: cell discharges are controlled by the ascending brainstem synchronizing pathway in parallel with hippocampal theta-related cells.
    Dickson CT; Kirk IJ; Oddie SD; Bland BH
    Hippocampus; 1995; 5(4):306-19. PubMed ID: 8589794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional coupling in rat central olfactory pathways: a coherence analysis.
    Chabaud P; Ravel N; Wilson DA; Gervais R
    Neurosci Lett; 1999 Nov; 276(1):17-20. PubMed ID: 10586964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial properties of an EEG event in the olfactory bulb and cortex.
    Freeman WJ
    Electroencephalogr Clin Neurophysiol; 1978 May; 44(5):586-605. PubMed ID: 77765
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.