BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33782043)

  • 1. Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification.
    Mouilleau V; Vaslin C; Robert R; Gribaudo S; Nicolas N; Jarrige M; Terray A; Lesueur L; Mathis MW; Croft G; Daynac M; Rouiller-Fabre V; Wichterle H; Ribes V; Martinat C; Nedelec S
    Development; 2021 Mar; 148(6):. PubMed ID: 33782043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro.
    Cooper F; Gentsch GE; Mitter R; Bouissou C; Healy LE; Rodriguez AH; Smith JC; Bernardo AS
    Stem Cell Reports; 2022 Apr; 17(4):894-910. PubMed ID: 35334218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor neuron columnar fate imposed by sequential phases of Hox-c activity.
    Dasen JS; Liu JP; Jessell TM
    Nature; 2003 Oct; 425(6961):926-33. PubMed ID: 14586461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity.
    Nordström U; Maier E; Jessell TM; Edlund T
    PLoS Biol; 2006 Jul; 4(8):e252. PubMed ID: 16895440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns.
    Bulajić M; Srivastava D; Dasen JS; Wichterle H; Mahony S; Mazzoni EO
    Development; 2020 Nov; 147(22):. PubMed ID: 33028607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids.
    Liu JP; Laufer E; Jessell TM
    Neuron; 2001 Dec; 32(6):997-1012. PubMed ID: 11754833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives.
    Wind M; Gogolou A; Manipur I; Granata I; Butler L; Andrews PW; Barbaric I; Ning K; Guarracino MR; Placzek M; Tsakiridis A
    Development; 2021 Mar; 148(6):. PubMed ID: 33658223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm.
    Lippmann ES; Williams CE; Ruhl DA; Estevez-Silva MC; Chapman ER; Coon JJ; Ashton RS
    Stem Cell Reports; 2015 Apr; 4(4):632-44. PubMed ID: 25843047
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Yen YP; Hsieh WF; Tsai YY; Lu YL; Liau ES; Hsu HC; Chen YC; Liu TC; Chang M; Li J; Lin SP; Hung JH; Chen JA
    Elife; 2018 Oct; 7():. PubMed ID: 30311912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing and maintaining Hox profiles during spinal cord development.
    Miller A; Dasen JS
    Semin Cell Dev Biol; 2024; 152-153():44-57. PubMed ID: 37029058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord.
    Liu JP
    Development; 2006 Aug; 133(15):2865-74. PubMed ID: 16790475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals.
    Mazzoni EO; Mahony S; Peljto M; Patel T; Thornton SR; McCuine S; Reeder C; Boyer LA; Young RA; Gifford DK; Wichterle H
    Nat Neurosci; 2013 Sep; 16(9):1191-1198. PubMed ID: 23955559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes.
    Catela C; Shin MM; Lee DH; Liu JP; Dasen JS
    Cell Rep; 2016 Mar; 14(8):1901-15. PubMed ID: 26904955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal development: putting motor neurons in their place.
    Guthrie S
    Curr Biol; 2004 Feb; 14(4):R166-8. PubMed ID: 15027472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pluripotent stem cell differentiation reveals distinct developmental pathways regulating lung- versus thyroid-lineage specification.
    Serra M; Alysandratos KD; Hawkins F; McCauley KB; Jacob A; Choi J; Caballero IS; Vedaie M; Kurmann AA; Ikonomou L; Hollenberg AN; Shannon JM; Kotton DN
    Development; 2017 Nov; 144(21):3879-3893. PubMed ID: 28947536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1.
    Dasen JS; De Camilli A; Wang B; Tucker PW; Jessell TM
    Cell; 2008 Jul; 134(2):304-16. PubMed ID: 18662545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord.
    Shi Y; Liu JP
    J Neurosci; 2011 Jan; 31(3):883-93. PubMed ID: 21248112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Generation of Posterior Motor Neurons from Human Pluripotent Stem Cells.
    Wind M; Tsakiridis A
    Curr Protoc; 2021 Sep; 1(9):e244. PubMed ID: 34547185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specification and maintenance of the spinal cord stem zone.
    Delfino-Machín M; Lunn JS; Breitkreuz DN; Akai J; Storey KG
    Development; 2005 Oct; 132(19):4273-83. PubMed ID: 16141226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tail Bud Progenitor Activity Relies on a Network Comprising Gdf11, Lin28, and Hox13 Genes.
    Aires R; de Lemos L; Nóvoa A; Jurberg AD; Mascrez B; Duboule D; Mallo M
    Dev Cell; 2019 Feb; 48(3):383-395.e8. PubMed ID: 30661984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.