These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33782136)

  • 1. The diversity of stomatal development regulation in
    Doll Y; Koga H; Tsukaya H
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of the mechanism of stomatal development diversification.
    Doll Y; Koga H; Tsukaya H
    J Exp Bot; 2023 Sep; 74(18):5667-5681. PubMed ID: 37555400
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Doll Y; Koga H; Tsukaya H
    Plant Signal Behav; 2021 Nov; 16(11):1978201. PubMed ID: 34538209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis.
    Pillitteri LJ; Peterson KM; Horst RJ; Torii KU
    Plant Cell; 2011 Sep; 23(9):3260-75. PubMed ID: 21963668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types.
    Triviño M; Martín-Trillo M; Ballesteros I; Delgado D; de Marcos A; Desvoyes B; Gutiérrez C; Mena M; Fenoll C
    Plant J; 2013 Sep; 75(5):808-22. PubMed ID: 23662679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOUR LIPS plays a role in meristemoid-to-GMC fate transition during stomatal development in Arabidopsis.
    Li P; Chen L; Gu X; Zhao M; Wang W; Hou S
    Plant J; 2023 Apr; 114(2):424-436. PubMed ID: 36786686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
    Mahoney AK; Anderson EM; Bakker RA; Williams AF; Flood JJ; Sullivan KC; Pillitteri LJ
    Planta; 2016 Apr; 243(4):987-98. PubMed ID: 26748914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Termination of asymmetric cell division and differentiation of stomata.
    Pillitteri LJ; Sloan DB; Bogenschutz NL; Torii KU
    Nature; 2007 Feb; 445(7127):501-5. PubMed ID: 17183267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple transcriptional factors control stomata development in rice.
    Wu Z; Chen L; Yu Q; Zhou W; Gou X; Li J; Hou S
    New Phytol; 2019 Jul; 223(1):220-232. PubMed ID: 30825332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning.
    Rudall PJ; Knowles EV
    Ann Bot; 2013 Oct; 112(6):1031-43. PubMed ID: 23969762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure and development of non-contiguous stomatal clusters and helicocytic patterning in Begonia.
    Rudall PJ; Julier ACM; Kidner CA
    Ann Bot; 2018 Nov; 122(5):767-776. PubMed ID: 29186307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatal development: three steps for cell-type differentiation.
    Torii KU; Kanaoka MM; Pillitteri LJ; Bogenschutz NL
    Plant Signal Behav; 2007 Jul; 2(4):311-3. PubMed ID: 19704632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel role for STOMATAL CARPENTER 1 in stomata patterning.
    Castorina G; Fox S; Tonelli C; Galbiati M; Conti L
    BMC Plant Biol; 2016 Aug; 16(1):172. PubMed ID: 27484174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor.
    Zuch DT; Herrmann A; Kim ED; Torii KU
    Plant Cell Physiol; 2023 Mar; 64(3):325-335. PubMed ID: 36609867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The remarkable stomata of horsetails (Equisetum): patterning, ultrastructure and development.
    Cullen E; Rudall PJ
    Ann Bot; 2016 Aug; 118(2):207-18. PubMed ID: 27268485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.
    Ran JH; Shen TT; Liu WJ; Wang XQ
    PLoS One; 2013; 8(11):e78997. PubMed ID: 24244399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis.
    Peterson KM; Shyu C; Burr CA; Horst RJ; Kanaoka MM; Omae M; Sato Y; Torii KU
    Development; 2013 May; 140(9):1924-35. PubMed ID: 23515473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell.
    Yang K; Jiang M; Le J
    J Integr Plant Biol; 2014 Jun; 56(6):539-49. PubMed ID: 24386951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations.
    Lampard GR; Lukowitz W; Ellis BE; Bergmann DC
    Plant Cell; 2009 Nov; 21(11):3506-17. PubMed ID: 19897669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewiring of hormones and light response pathways underlies the inhibition of stomatal development in an amphibious plant Rorippa aquatica underwater.
    Ikematsu S; Umase T; Shiozaki M; Nakayama S; Noguchi F; Sakamoto T; Hou H; Gohari G; Kimura S; Torii KU
    Curr Biol; 2023 Feb; 33(3):543-556.e4. PubMed ID: 36696900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.