These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33782136)

  • 21. Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development.
    Delgado D; Ballesteros I; Torres-Contreras J; Mena M; Fenoll C
    Planta; 2012 Aug; 236(2):447-61. PubMed ID: 22407427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.
    Bhave NS; Veley KM; Nadeau JA; Lucas JR; Bhave SL; Sack FD
    Planta; 2009 Jan; 229(2):357-67. PubMed ID: 18979118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons.
    Han X; Hu Y; Zhang G; Jiang Y; Chen X; Yu D
    Plant Physiol; 2018 Apr; 176(4):2871-2885. PubMed ID: 29496884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L.
    Koga H; Kojima M; Takebayashi Y; Sakakibara H; Tsukaya H
    Plant Cell; 2021 Oct; 33(10):3272-3292. PubMed ID: 34312675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis.
    Shi W; Wang L; Yao L; Hao W; Han C; Fan M; Wang W; Bai MY
    Nat Commun; 2022 Aug; 13(1):5040. PubMed ID: 36028510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Pillitteri LJ; Bogenschutz NL; Torii KU
    Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From epidermal cells to functional pores: Understanding stomatal development.
    Falquetto-Gomes P; Silva WJ; Siqueira JA; Araújo WL; Nunes-Nesi A
    J Plant Physiol; 2024 Jan; 292():154163. PubMed ID: 38118303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Fu ZW; Wang YL; Lu YT; Yuan TT
    Plant Sci; 2016 Nov; 252():282-289. PubMed ID: 27717464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimorphic Leaf Development of the Aquatic Plant
    Koga H; Doll Y; Hashimoto K; Toyooka K; Tsukaya H
    Front Plant Sci; 2020; 11():269. PubMed ID: 32211013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Lee JH; Jung JH; Park CM
    Plant Cell; 2017 Nov; 29(11):2817-2830. PubMed ID: 29070509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shouting out loud: signaling modules in the regulation of stomatal development.
    Herrmann A; Torii KU
    Plant Physiol; 2021 Apr; 185(3):765-780. PubMed ID: 33793896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis stomatal lineage cells establish bipolarity and segregate differential signaling capacity to regulate stem cell potential.
    Wallner ES; Dolan L; Bergmann DC
    Dev Cell; 2023 Sep; 58(18):1643-1656.e5. PubMed ID: 37607546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Qi X; Han SK; Dang JH; Garrick JM; Ito M; Hofstetter AK; Torii KU
    Elife; 2017 Mar; 6():. PubMed ID: 28266915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An inducible, modular system for spatio-temporal control of gene expression in stomatal guard cells.
    Xiong TC; Hann CM; Chambers JP; Surget M; Ng CK
    J Exp Bot; 2009; 60(14):4129-36. PubMed ID: 19700494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis.
    Xue X; Bian C; Guo X; Di R; Dong J
    PLoS Genet; 2020 Apr; 16(4):e1008706. PubMed ID: 32240168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis.
    Negi J; Moriwaki K; Konishi M; Yokoyama R; Nakano T; Kusumi K; Hashimoto-Sugimoto M; Schroeder JI; Nishitani K; Yanagisawa S; Iba K
    Curr Biol; 2013 Mar; 23(6):479-84. PubMed ID: 23453954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata.
    Han SK; Qi X; Sugihara K; Dang JH; Endo TA; Miller KL; Kim ED; Miura T; Torii KU
    Dev Cell; 2018 May; 45(3):303-315.e5. PubMed ID: 29738710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The chemical compound bubblin induces stomatal mispatterning in Arabidopsis by disrupting the intrinsic polarity of stomatal lineage cells.
    Sakai Y; Sugano SS; Kawase T; Shirakawa M; Imai Y; Kawamoto Y; Sugiyama H; Nakagawa T; Hara-Nishimura I; Shimada T
    Development; 2017 Feb; 144(3):499-506. PubMed ID: 28087627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.