These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
511 related articles for article (PubMed ID: 33782401)
1. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Li WJ; He YH; Yang JJ; Hu GS; Lin YA; Ran T; Peng BL; Xie BL; Huang MF; Gao X; Huang HH; Zhu HH; Ye F; Liu W Nat Commun; 2021 Mar; 12(1):1946. PubMed ID: 33782401 [TBL] [Abstract][Full Text] [Related]
2. Identification of hnRNP-A1 as a pharmacodynamic biomarker of type I PRMT inhibition in blood and tumor tissues. Noto PB; Sikorski TW; Zappacosta F; Wagner CD; Montes de Oca R; Szapacs ME; Annan RS; Liu Y; McHugh CF; Mohammad HP; Piccoli SP; Creasy CL Sci Rep; 2020 Dec; 10(1):22155. PubMed ID: 33335114 [TBL] [Abstract][Full Text] [Related]
3. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. Maron MI; Casill AD; Gupta V; Roth JS; Sidoli S; Query CC; Gamble MJ; Shechter D Elife; 2022 Jan; 11():. PubMed ID: 34984976 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the role of PRMTs in prostate cancer using open access databases and a patient cohort dataset. Grypari IM; Pappa I; Papastergiou T; Zolota V; Bravou V; Melachrinou M; Megalooikonomou V; Tzelepi V Histol Histopathol; 2023 Mar; 38(3):287-302. PubMed ID: 36082942 [TBL] [Abstract][Full Text] [Related]
6. Epigenetic reader ZMYND11 noncanonical function restricts HNRNPA1-mediated stress granule formation and oncogenic activity. Lian C; Zhang C; Tian P; Tan Q; Wei Y; Wang Z; Zhang Q; Zhang Q; Zhong M; Zhou LQ; Ke X; Zhang H; Zhu Y; Li Z; Cheng J; Wei GH Signal Transduct Target Ther; 2024 Sep; 9(1):258. PubMed ID: 39341825 [TBL] [Abstract][Full Text] [Related]
7. PRMT7 methylates eukaryotic translation initiation factor 2α and regulates its role in stress granule formation. Haghandish N; Baldwin RM; Morettin A; Dawit HT; Adhikary H; Masson JY; Mazroui R; Trinkle-Mulcahy L; Côté J Mol Biol Cell; 2019 Mar; 30(6):778-793. PubMed ID: 30699057 [TBL] [Abstract][Full Text] [Related]
8. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Larsen SC; Sylvestersen KB; Mund A; Lyon D; Mullari M; Madsen MV; Daniel JA; Jensen LJ; Nielsen ML Sci Signal; 2016 Aug; 9(443):rs9. PubMed ID: 27577262 [TBL] [Abstract][Full Text] [Related]
9. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Shishkova E; Zeng H; Liu F; Kwiecien NW; Hebert AS; Coon JJ; Xu W Nat Commun; 2017 May; 8():15571. PubMed ID: 28537268 [TBL] [Abstract][Full Text] [Related]
10. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Al-Hamashi AA; Diaz K; Huang R Curr Protein Pept Sci; 2020; 21(7):699-712. PubMed ID: 32379587 [TBL] [Abstract][Full Text] [Related]
11. The macromolecular complexes of histones affect protein arginine methyltransferase activities. Fulton MD; Cao M; Ho MC; Zhao X; Zheng YG J Biol Chem; 2021 Oct; 297(4):101123. PubMed ID: 34492270 [TBL] [Abstract][Full Text] [Related]
12. Deep Protein Methylation Profiling by Combined Chemical and Immunoaffinity Approaches Reveals Novel PRMT1 Targets. Hartel NG; Chew B; Qin J; Xu J; Graham NA Mol Cell Proteomics; 2019 Nov; 18(11):2149-2164. PubMed ID: 31451547 [TBL] [Abstract][Full Text] [Related]
13. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Krause CD; Yang ZH; Kim YS; Lee JH; Cook JR; Pestka S Pharmacol Ther; 2007 Jan; 113(1):50-87. PubMed ID: 17005254 [TBL] [Abstract][Full Text] [Related]
14. HNRNPA1 promotes recognition of splice site decoys by U2AF2 in vivo. Howard JM; Lin H; Wallace AJ; Kim G; Draper JM; Haeussler M; Katzman S; Toloue M; Liu Y; Sanford JR Genome Res; 2018 May; 28(5):689-698. PubMed ID: 29650551 [TBL] [Abstract][Full Text] [Related]
15. Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Szewczyk MM; Ishikawa Y; Organ S; Sakai N; Li F; Halabelian L; Ackloo S; Couzens AL; Eram M; Dilworth D; Fukushi H; Harding R; Dela Seña CC; Sugo T; Hayashi K; McLeod D; Zepeda C; Aman A; Sánchez-Osuna M; Bonneil E; Takagi S; Al-Awar R; Tyers M; Richard S; Takizawa M; Gingras AC; Arrowsmith CH; Vedadi M; Brown PJ; Nara H; Barsyte-Lovejoy D Nat Commun; 2020 May; 11(1):2396. PubMed ID: 32409666 [TBL] [Abstract][Full Text] [Related]
16. The C. elegans PRMT-3 possesses a type III protein arginine methyltransferase activity. Takahashi Y; Daitoku H; Yokoyama A; Nakayama K; Kim JD; Fukamizu A J Recept Signal Transduct Res; 2011 Apr; 31(2):168-72. PubMed ID: 21385054 [TBL] [Abstract][Full Text] [Related]
17. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2. Hadjikyriacou A; Yang Y; Espejo A; Bedford MT; Clarke SG J Biol Chem; 2015 Jul; 290(27):16723-43. PubMed ID: 25979344 [TBL] [Abstract][Full Text] [Related]
18. Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3. Zhang B; Dong S; Zhu R; Hu C; Hou J; Li Y; Zhao Q; Shao X; Bu Q; Li H; Wu Y; Cen X; Zhao Y Oncotarget; 2015 Sep; 6(26):22799-811. PubMed ID: 26078354 [TBL] [Abstract][Full Text] [Related]
19. Arginine Methylation: The Coming of Age. Blanc RS; Richard S Mol Cell; 2017 Jan; 65(1):8-24. PubMed ID: 28061334 [TBL] [Abstract][Full Text] [Related]
20. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop. Feng Y; Hadjikyriacou A; Clarke SG J Biol Chem; 2014 Nov; 289(47):32604-16. PubMed ID: 25294873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]